INTRODUCTION TO TRIGONOMETRY-Notes

Trigonometry is one of the most fascinating and powerful branches of mathematics, opening the doorway to understanding angles, heights, distances, navigation, astronomy, architecture, physics, and countless real-world applications. NCERT Class 10 Chapter 8, “Introduction to Trigonometry,” lays the foundation for this journey by introducing learners to the relationships between the sides and angles of a right-angled triangle. This chapter begins with the origins of trigonometry, gradually helping students grasp the meaning of trigonometric ratios, their interdependence, and how they vary with different angles. Through clear explanations, structured examples, and intuitive reasoning, the chapter ensures that students build a strong conceptual base before applying trigonometry to real-life situations in later lessons. By mastering this chapter, students gain the confidence to solve problems involving heights and distances, understand mathematical modelling, and appreciate the role of trigonometry in advanced studies such as engineering, architecture, geodesy, computer graphics, and physical sciences. This prologue sets the stage for a deep, meaningful, and engaging exploration of trigonometry—an essential tool that shapes modern technology and scientific innovation.

Continue Reading →
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.2

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.1

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
December 10, 2025  |  By Academia Aeternum

INTRODUCTION TO TRIGONOMETRY-Notes

Maths - Notes

BASICS OF RIGHT-ANGLED TRIANGLES

A right-angled triangle is a triangle with one angle equal to \(\mathrm{90^\circ}).

Given such a triangle:

  • The side opposite the right angle is called the hypotenuse—the longest side.
  • The side opposite the angle under consideration is the perpendicular (or opposite side).
  • The side adjacent to that angle (other than hypotenuse) is the base (or adjacent side).
These labels change depending on which acute angle (θ or A) is being referred to
The famous Pythagoras theorem underlies trigonometry:
\[(Hypotenuse)^2=(Base)^2+(Perpendicular)^2\] This relationship ensures that all trigonometric ratios are well-defined and interconnected.

TRIGONOMETRIC RATIOS OF AN ANGLE

For an acute angle \(\theta\) in a right triangle, the six trigonometric ratios are defined as:

  1. \(\bf sin\ \theta\):
    \[sin\ \theta=\frac{Perpendicular}{Hypotenuse}\]
  2. \(\bf cos\ \theta\):
    \[cos\ \theta=\frac{Base}{Hypotenuse}\]
  3. \(\bf tan\ \theta\):
    \[cos\ \theta=\frac{Perpendicular}{Base}\]
  4. \(\bf Cosecant(cosec\ \theta)\):
    \[cosec\ \theta=\frac{1}{sin\ \theta}=\frac{Hypotenuse}{Perpendicular}\]
  5. \(\bf Secant(sec\ \theta)\):
    \[sec\ \theta=\frac{1}{cos\ \theta}=\frac{Hypotenuse}{Base}\]
  6. \(\bf Cotangent(cot\ \theta)\):
    \[cot\ \theta=\frac{1}{tan\ \theta}=\frac{Base}{Perpendicular}\]

Rhyme to remember these trigonometric ratios

\(P\)andit \(B\)adri \(P\)rasad
\(H\)ar \(H\)ar \(B\)ole

\[ \color{white} \begin{array}{|c|c|c|} \hline \sin\theta & \cos\theta & \tan\theta \\ \hline \color{red}P & \color{red}B & \color{red}P \\ \hline \color{red}H & \color{red}H & \color{red}B \\ \hline \text{cosec}\ \theta & \sec\theta & \cot\theta \\ \hline \end{array} \]

Explanation using the mnemonic:

In this trick, the highlighted letters \(P, B, P, H, H, B\) from the line “Pandit Badri Prasad Har Har Bole” are mapped to the trigonometric ratios \(\sin\theta\), \(\cos\theta\) and \(\tan\theta\).


The first red row \((P, B, P)\) gives the first letters of the numerators: for \(\sin\theta\) and \(\tan\theta\) use \(P\) (perpendicular / opposite side), and for \(\cos\theta\) use \(B\) (base / adjacent side).

Thus, \(\sin\theta \Rightarrow P\), \(\cos\theta \Rightarrow B\), \(\tan\theta \Rightarrow P\).


The second red row \((H, H, B)\) gives the first letters of the denominators: for \(\sin\theta\) and \(\cos\theta\) use \(H\) (hypotenuse), and for \(\tan\theta\) use \(B\) (base). So you obtain \[ \sin\theta = \frac{P}{H}, \quad \cos\theta = \frac{B}{H}, \quad \tan\theta = \frac{P}{B}. \]


The last row reminds that the remaining three ratios are just the reciprocals of the first three: \[\text{cosec}\theta = \dfrac{1}{\sin\theta}\] \[\sec\theta = \dfrac{1}{\cos\theta}\] \[\cot\theta = \dfrac{1}{\tan\theta}\]

Why trigonometric ratios do NOT depend on the size of the triangle

Because any two right-angled triangles with the same angle have the same shape, even if one is bigger or smaller. Same shape \(\Rightarrow\) their sides increase or decrease in the same proportion.

So, although the lengths of the sides change, the ratio of those sides remains the same. That fixed ratio is what we call sin, cos, tan, etc.

Example-1

Fig. 8.8-x
Fig. 8.8

Given \(\tan A = \frac{4}{3}\), find the othertrigonometric ratios of the angle A.

Solution:

$$\begin{aligned}\tan A&=\dfrac{4}{3}\\\\ \tan A&=\dfrac{P}{B}\\ BC&=4k\quad\scriptsize\text{(k is a positive number)}\\ AB&=3k\\\\ AC&=\sqrt{\left( 4k\right) ^{2}+\left( 3k\right) ^{2}}\\ &=\sqrt{16k^{2}+9k^{2}}\\ &=\sqrt{25x^{2}}\\ &=5k\\\\ \sin A&=\dfrac{BC}{AC}\\ &=\dfrac{4k}{5k}\\ &=\dfrac{4}{5}\\\\ \cos A&=\dfrac{AB}{AC}\\ &=\dfrac{3k}{5k}\\ &=\dfrac{3}{5}\\\\ \text{cosec} A&=\dfrac{1}{\sin A}\\ &=\dfrac{1}{4/5}\\ &=\dfrac{5}{4}\\\\ \sec A&=\dfrac{1}{\cos A}\\ &=\dfrac{1}{3/5}\\ &=\dfrac{5}{3}\\\\ \cot A&=\dfrac{1}{\tan A}\\ &=\dfrac{1}{4/3}\\ &=\dfrac{3}{4}\end{aligned}$$

Example-2

If \(\angle B\) and \(\angle Q\) are acute angles such that sin B = sin Q, then prove that \(\angle B = \angle Q.\)

Solution:

Given that sin B = sin Q

$$\begin{aligned}\sin B=\dfrac{AC}{AB}\\ \sin Q=\dfrac{PR}{PQ}\\ \sin B=\sin Q\\ \dfrac{AC}{AB}=\dfrac{PR}{PQ}=k\\ AC=kAB\\ PR=kPQ\\ BC=\sqrt{AB^{2}-AC^{2}}\\ QR=\sqrt{PQ^{2}-PR^{2}}\\ \dfrac{BC}{QR}=\dfrac{\sqrt{AB^{2}-AC^{2}}}{\sqrt{PQ^{2}-PR^{2}}}\\ \dfrac{BC}{QR}=\dfrac{\sqrt{\left( AB\right) ^{2}-\left( kAB\right) ^{2}}}{\sqrt{\left( PQ\right) ^{2}-\left( kPQ\right) ^{2}}}\\ \dfrac{BC}{QR}=\dfrac{AB\sqrt{1-k^{2}}}{PQ\sqrt{1-k^{2}}}\\ \dfrac{BC}{QR}=\dfrac{AB}{PQ}=\dfrac{AC}{PR}\\ \therefore \triangle ABC\sim \Delta PQR\left( SSS\right) \\ \Rightarrow \angle B=\angle Q\end{aligned}$$ Hence Proved.

Example-3

Fig. 8.10
Fig. 8.10

Consider \(\triangle ACB\), right-angled at \(C\), in which \(AB\) = 29 units, \(BC\) = 21 units and \(\angle ABC = \theta\) (see Fig. 8.10). Determine the values of
(i) \(cos^2\ \theta + sin^2\ \theta\),
(ii) \(cos^2\ \theta – sin^2\ \theta\)

SOlutions:

AB = 29
BC = 21

$$\begin{aligned}AB^{2}&=29^{2}-21^{2}\\ &=\left( 29+21\right) \times \left( 29-21\right) \\ &=50\times 8\\ &=400\\ AB&=\sqrt{400}\\ AB&=20\\\\ \sin \theta &=\dfrac{AB}{AC}\\ &=\dfrac{20}{29}\\\\ \sin ^{2}\theta &=\left( \dfrac{20}{29}\right) ^{2}\\\\ \cos \theta &=\dfrac{BC}{AC}\\ &=\dfrac{21}{29}\\\\ \cos ^{2}\theta &=\left( \dfrac{21}{29}\right) ^{2}\\\\ \sin ^{2}\theta +\cos ^{2}\theta &=\left( \dfrac{20}{29}\right) ^{2}+\left( \dfrac{21}{29}\right) ^{2}\\ &=\dfrac{400+441}{841}\\ &=\dfrac{841}{841}\\ &=1\\\\ \cos ^{2}\theta -\sin ^{2}\theta &=\left( \dfrac{21}{29}\right) ^{2}-\left( \dfrac{20}{29}\right) ^{2}\\ &=\left( \dfrac{21}{29}+\dfrac{20}{29}\right) \times \left( \dfrac{21}{29}-\dfrac{20}{29}\right) \\ &=\left( \dfrac{41}{29}\right) \times \left( \dfrac{1}{29}\right) \\ &=\dfrac{41}{841}\end{aligned}$$

Example-4

Fig. 8.11
Fig. 8.11

In a right triangle ABC, right-angled at B, if tan A = 1, then verify that 2 sin A cos A = 1.

Solutions:

$$\begin{aligned}\tan A&=1\\\\ \tan A&=\dfrac{BC}{AB}\\ \dfrac{BC}{AB}&=1\\ BC&=AB\\ \text{Let}\\ BC=AB&=k\quad\scriptsize\text{(k is positive number)}\\\\ AC&=\sqrt{BC^{2}+AB^{2}}\\ &=\sqrt{k^{2}+k^{2}}\\ &=k\sqrt{2}\\\\ \sin\ A&=\dfrac{BC}{AC}\\ &=\dfrac{k}{k\sqrt{2}}\\ &=\dfrac{1}{\sqrt{2}}\\\\ \cos A&=\dfrac{AB}{AC}\\ &=\dfrac{k}{k\sqrt{2}}\\ &=\dfrac{1}{\sqrt{2}}\\\\ 2\times \sin A\cdot \cos A&=1\\\\ LHS\\\\ 2\times \dfrac{1}{\sqrt{2}}\times \dfrac{1}{\sqrt{2}}&=1\\\\ LHS&=RHS\end{aligned}$$ Hence Proved

Example-5

Fig. 8.12
Fig. 8.12

In \(\triangle OPQ\), right-angled at P, OP = 7 cm and OQ – PQ = 1 cm (see Fig. 8.12). Determine the values of sin Q and cos Q.

Solutions:

OP=7
OQ-PQ = 1
To find sin Q and cos Q

$$\begin{aligned}OQ-PQ&=1\\ OQ&=1+PQ\\\\ \text{By Pyth}&\text{agoras Theorm}\\ OQ^{2}&=PQ^{2}+OP^{2}\\ \left( 1+PQ\right) ^{2}&=PQ^{2}+7^{2}\\ 1+PQ^{2}+2PQ&=PQ^{2}+49\\ 2PQ&=49-1\\ PQ&=\dfrac{48}{2}\\ &=24\\\\ OQ&=1+PQ\\ OQ&=24+1\\ &=25\\\\ \sin Q&=\dfrac{OP}{OQ}\\ &=\dfrac{7}{25}\\\\ \cos Q&=\dfrac{PQ}{OQ}\\ &=\dfrac{24}{25}\end{aligned}$$

Trigonometric Ratios of Some Specific Angles

Angle (°) sin θ cos θ tan θ
0 1 0
30° \(\frac{1}{2}\) \(\frac{\sqrt3}{2}\) \(\frac{1}{\sqrt3}\)
45° \(\frac{1}{\sqrt2}\) \(\frac{1}{\sqrt2}\) 1
60° \(\frac{\sqrt3}{2}\) \(\frac{1}{2}\) \(\sqrt3\)
90° 1 0 Not defined

Tricks to remember Trigonometric Ratios of Some Specific Angles

Angles: \(0^\circ,\ 30^\circ,\ 45^\circ,\ 60^\circ,\ 90^\circ\)

Step 1 (for \(\sin\theta\)): Think of the numbers 0 1 2 3 4 in order.

Divide each by 4 and put a square root: \[ \sin\theta:\quad \sqrt{\tfrac{0}{4}},\ \sqrt{\tfrac{1}{4}},\ \sqrt{\tfrac{2}{4}},\ \sqrt{\tfrac{3}{4}},\ \sqrt{\tfrac{4}{4}} \]

These match \(\sin 0^\circ, \sin 30^\circ, \sin 45^\circ, \sin 60^\circ, \sin 90^\circ\) in this same order.

Trick: For \(\cos\theta\), just reverse the order!

For \(\cos\theta\), use the same five values \(\sqrt{\tfrac{0}{4}}, \sqrt{\tfrac{1}{4}}, \sqrt{\tfrac{2}{4}}, \sqrt{\tfrac{3}{4}}, \sqrt{\tfrac{4}{4}}\) but read them from right to left for the angles \(0^\circ\) to \(90^\circ\).

So the \(\sin\) row goes from 0 to 4 under the root, and the \(\cos\) row goes from 4 back to 0 under the root. One small pattern helps you remember the full table for these special angles.

Example-6

Fig. 8.19
Fig. 8.19

In \(triangle ABC\), right-angled at B, AB = 5 cm and \(angle ACB = 30°\) (see Fig. 8.19). Determine the lengths of the sides BC and AC.

Solutions:

AB = 5cm, \(angle ACB = 30°\), to find AC and BC we can use any of the 3 ratio.

$$\begin{aligned}\sin 30^{\circ }&=\dfrac{AB}{AC}\\ \dfrac{1}{2}&=\dfrac{5}{AC}\\ &=5\times 2\\ &=10\end{aligned}$$

Side AC and AB are known we can either use pythagoras theorem to calculate the third side or trigonometrical ratio

$$\begin{aligned}AC^{2}&=AB^{2}+BC^{2}\\ &=AC^{2}-AB^{2}\\ &=10^{2}-5^{2}\\ &=100-25\\ &=75\\ BC&=\sqrt{75}\\ &=5\times \sqrt{3}\end{aligned}$$

Same Result can be acheived by using trigonometrical ratios

$$\begin{aligned}\cos 30^{\circ }&=\dfrac{BC}{AC}\\ \dfrac{\sqrt{3}}{2}&=\dfrac{BC}{10}\\ BC&=\dfrac{10\times \sqrt{3}}{2}\\ &=5\times \sqrt{3}\end{aligned}$$

Example-7

Fig. 8.20
Fig. 8.20

In \(\triangle PQR\), right-angled at Q (see Fig. 8.20), PQ = 3 cm and PR = 6 cm. Determine \(\angle QPR\) and \(\angle PRQ.\)

Solutions:

PQ = 3cm, PR = 6 cm

$$\begin{aligned}\sin R&=\dfrac{PQ}{PR}\\ &=\dfrac{3}{6}\\ &=\dfrac{1}{2}\\ \angle R&=30^{\circ }\end{aligned}$$

By Angle Sum property

$$\begin{aligned}\angle P+\angle Q+\angle R&=180^{\circ}\\ \angle P+90^{\circ}+30^{\circ}&=180^{\circ }\\ \angle P&=180^{\circ }-120^{\circ }\\ \angle P&=60^{\circ}\end{aligned}$$

Trigonometric Identities

  • \(cos^2\ A + sin^2\ A =1\)
  • \( 1 + tan^2\ A =sec^2\ A\)
  • \(cot^2\ A + 1 =cosec^2\ A\)

Example-8

Express the ratios cos A, tan A and sec A in terms of sin A.

Solution:

$$\begin{aligned} \cos ^{2}A+\sin ^{2}A&=1\\ \cos ^{2}A&=1-\sin ^{2}A\\ \cos A&=\pm \sqrt{1-\sin ^{2}A}\\ &=\sqrt{1-\sin ^{2}A}\\ &\scriptsize\left[ \because \left( -1 \lt \sin A \lt 1\right) \right] \end{aligned}$$ $$\begin{aligned}\sec A&=\dfrac{1}{\cos A}\\ \\ &=\dfrac{1}{\sqrt{1-\sin ^{2}A}}\\\\ \tan A&=\dfrac{\sin A}{\cos A}\\\\ &=\dfrac{\sin A}{\sqrt{1-\sin ^{2}A}}\end{aligned}$$

Example-9

Prove that sec A (1 – sin A)(sec A + tan A) = 1

Solution:

$$\scriptsize\begin{aligned}LHS\\\\ &\sec A\left( 1-\sin A\right) \times \left( \sec A+\tan A\right) \\\\ &=\dfrac{1}{\cos A}\times \left( 1-\sin A\right) \times \left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\right) \\\\ &=\left( \dfrac{1}{\cos A}-\dfrac{\sin A}{\cos A}\right) \times \left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\right) \\\\ &=\left( \dfrac{1-\sin A}{\cos A}\right) \times \left( \dfrac{1+\sin A}{\cos A}\right) \\\\ &=\dfrac{1}{\cos ^{2}A}\times \left[ \left( 1-\sin A\right) \times \left( 1+\sin A\right) \right] \\\\ &=\dfrac{1}{\cos ^{2}A}\times \left[ 1-\sin ^{2}A\right] \\\\ &+\dfrac{\cos ^{2}A}{\cos ^{2}A}\\\\ &=1\\\\ LHS&=RHS\end{aligned}$$ Hence Proved.

Example-10

Prove that \(\dfrac{\cot\ A–\cos\ A}{\cot\ A+\cos\ A}=\dfrac{\text{cosec }A-1}{\text{cosec }A+1}\)

Solution:

$$\begin{aligned}LHS\\\\ &\dfrac{\cot A-\cos A}{\cot A+\cos A}\\\\ &=\dfrac{\dfrac{\cos A}{\sin A}-\cos A}{\dfrac{\cos A}{\sin A}+\cos A}\\\\ &=\dfrac{\dfrac{\cos A-\cos A\times \sin A}{\sin A}}{\dfrac{\cos A+\cos A\times \sin A}{\sin A}}\\\\ &=\dfrac{\cos A-\cos A\cdot \sin A}{\cos A+\cos A\cdot \sin A}\\\\ &=\dfrac{\cos A\times \left( 1-\sin A\right) }{\cos A\times \left( 1+\sin A\right) }\\\\ &=\dfrac{1-\sin A}{1+\sin A}\end{aligned}$$

Dividing numerator and Denominator by sin A

$$\begin{aligned}&=\dfrac{\dfrac{1-\sin A}{\sin A}}{\dfrac{1+\sin A}{\sin A}}\\\\ &=\dfrac{\dfrac{1}{\sin A}-1}{\dfrac{1}{\sin A}+1}\\\\ &=\dfrac{\text{cosec }A -1}{\text{cosec }A +1}\\\\ LHS&=RHS\end{aligned}$$ Hence Proved

Example-11

Prove that \(\dfrac{\sin\ \theta-\cos\ \theta +1}{\sin\ \theta +\cos\ \theta -1}=\dfrac{1}{\sec\ \theta - \tan\ \theta}\)

Solution:

$$\scriptsize\begin{aligned}LHS\\\\ &\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}\\\\ &=\dfrac{\cos \theta \times \left( \dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta }\right) }{\cos \theta \times \left( \dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta }\right) }\\\\ &=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }\\\\ &=\dfrac{\tan \theta +\sec \theta -1}{\tan \theta -\sec \theta +1}\end{aligned}$$

Multiply and divide by \((\tan \theta -\sec \theta )\)

$$\scriptsize\begin{aligned}&=\dfrac{\left( \tan \theta +\sec \theta -1\right) \times \left( \tan \theta -\sec \theta \right) }{\left( \tan \theta -\sec \theta +1\right) \times \left( \tan \theta -\sec \theta \right) }\\\\ &=\dfrac{\left( \tan ^{2}\theta -\sec ^{2}\theta \right) -1\times \left( \tan \theta -\sec \theta \right) }{\left( \tan \theta -\sec \theta +1\right) \times \left( \tan \theta -\sec \theta \right) }\\\\ &=\dfrac{\left( \tan ^{2}\theta -\left( 1+\tan ^{2}\theta \right) +\sec \theta -\tan \theta \right) }{\left( \tan \theta -\sec \theta +1\right) \times \left( \tan \theta -\sec \theta \right) }\\\\ &=\dfrac{\sec \theta -\tan \theta -1}{\left( \tan \theta -\sec \theta +1\right) \times \left( \tan \theta -\sec \theta \right) }\\\\ &=\dfrac{-\left( \tan \theta -\sec \theta +1\right) }{\left( \tan \theta -\sec \theta +1\right) \times \left( \tan \theta -\sec \theta \right) }\\\\ &=\dfrac{-1}{\tan \theta -\sec \theta }\\\\ &=\dfrac{1}{\sec \theta -\tan \theta }=RHS\\\\ LHS=RHS\end{aligned}$$ Hence Proved

Important Points

  • In a right triangle ABC, right-angled at B, \[ \begin{aligned} \sin\ A=\dfrac{\text{side opposite to angle A}}{\text{hypotenuse}}\\\\ \cos\ A=\dfrac{\text{side adjacent to angle A}}{\text{hypotenuse}}\\\\ \tan\ A=\dfrac{\text{side opposite toangle A}}{\text{side adjacent to angle A}} \end{aligned} \]
  • \[ \begin{aligned} \text{cosec}\ A=\dfrac{1}{\sin\ A}\\\\ \sec\ A=\dfrac{1}{\cos\ A}\\\\ \tan\ A=\dfrac{1}{\cot\ A}\\\\ \tan\ A=\dfrac{\sin\ A}{\cos\ A} \end{aligned} \]
  • If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be easily determined.
  • The value of sin A or cos A never exceeds 1, whereas the value of sec A (0° A < 90°) or cosec A (0° < A 90º) is always greater than or equal to 1.
  • \[\begin{aligned}\sin^2\ A + \cos^2\ A &= 1\\ \sec^2\ A – \tan^2\ A &= 1 \text{ for } 0° A < 90°\\ \text{cosec}^2\ A &=1 + cot^2\ A \text{ for } 0° < A 90º\end{aligned}\]

Frequently Asked Questions

Trigonometry is the branch of mathematics that studies the relationship between the sides and angles of a right-angled triangle usin g trigonometric ratios such as sin e, cos in e, and tan gent.

Trigonometric ratios are ratios of the lengths of the sides of a right triangle with respect to one of its acute angles. They include sin , cos , tan , cos ec, sec , and cot .

The six ratios are: sin \(\theta\), cos \(\theta\), tan \(\theta\), cos ec\(\ \theta\), sec \(\theta\), and cot \(\theta\).

sin \(\theta\) = Opposite side ÷ Hypotenuse.

cos \(\theta\) = Adjacent side ÷ Hypotenuse.

tan \(\theta\) = Opposite side ÷ Adjacent side.

tan \(\theta\) = sin \(\theta\) ÷ cos \(\theta\).

cosec\(\ \theta\) = 1 ÷ sin \(\theta\) = Hypotenuse ÷ Opposite side.

sec \(\theta\) = 1 ÷ cos \(\theta\) = Hypotenuse ÷ Adjacent side.

cot \(\theta\) = 1 ÷ tan \(\theta\) = Adjacent side ÷ Opposite side.

Values include: sin 0\(^\circ\)=0, sin 30\(^\circ\)=1/2, sin 45\(^\circ\)=v2/2, sin 60\(^\circ\)=v3/2, sin 90\(^\circ\)=1 (others similarly defined).

They help solve real-life problems involving heights, distan ces, angles of elevation/depression, navigation, physics, engineering, and architecture.

The angle formed between the horizontal line and the line of sight when the observer looks upward at an object.

The angle formed between the horizontal line and the line of sight when the observer looks downward from a higher point.

sin ²\(\ \theta\) + cos ²\(\ \theta\) = 1.

1 + tan ²\(\ \theta\) = sec ²\(\ \theta\) and 1 + cot ²\(\ \theta\) = cos ec²\(\ \theta\).

tan \(\theta\) × cot \(\theta\) = 1.

sin \(\theta\) × cosec\(\ \theta\) = 1.

cos \(\theta\) × sec \(\theta\) = 1.

45\(^\circ\), because sin 45\(^\circ\) = cos 45\(^\circ\) = v2/2.

Only acute angles (0\(^\circ\) < \(\theta\) < 90\(^\circ\)) are considered in this chapter.

No, negative angles and circular trigonometric functions are not introduced at this level.

Trigonometric ratios help determine unknown heights, widths, and distan ces by relating them to measured angles.

tan \(\theta\) = sin \(\theta\)/cos \(\theta\).

Use the mnemonic: SOH-CAH-TOA.or Pundit Badri Prasad Har Har Bole

Because it lies opposite the right angle, based on the Pythagorean theorem.

tan 90\(^\circ\) is undefined because cos 90\(^\circ\)=0.

sec 90\(^\circ\) = 1/cos 90\(^\circ\) = undefined.

Because tan 0\(^\circ\)=0, so cot 0\(^\circ\) = 1/0, which is undefined.

Two angles whose sum is 90\(^\circ\).

sin (90\(^\circ\)-\(\ \theta\))=cos \(\theta\), cos (90\(^\circ\)-\(\ \theta\))=sin \(\theta\), tan (90\(^\circ\)-\(\ \theta\))=cot \(\theta\), etc.

Ratios depend only on the angle, not on the actual size of the triangle.

No. For a given angle, the trigonometric ratios remain constan t.

\(\sin \theta\) = tan \(\theta\sqrt{(1+tan ²\ \theta}\).

\(\cos \theta = \dfrac{1}{\sqrt{(1+tan ² \theta}}\).

\(\tan \theta = \dfrac{\sin \theta}{\sqrt{(1-sin^2\ \theta}}\).

\(\tan \theta= \dfrac{\sqrt{(1-cos^2\ \theta)}}{\cos \theta}\).

Problems involving complementary angles and stan dard value tables are frequently tested.

Measuring mountain heights, building construction, aviation, satellite tracking, GPS, and navigation.

Class 10 NCERT curriculum covers only degree measure for introductory learning.

Yes, but such applications require advanced formulas (sin e rule, cos in e rule) taught in higher classes.

Theodolites, sextan ts, clinometers, laser rangefinders, and surveying instruments.

A surveying instrument used to measure horizontal and vertical angles for calculating heights and distan ces.

It is used in designing structures, mechanical components, electrical waves, circuits, and digital systems.

It creates equal opposite and adjacent sides, leading to simple trigonometric values.

Three core identities: sin ²\(\ \theta\) + cos ²\(\ \theta\) = 1; 1 + tan ²\(\ \theta\) = sec ²\(\ \theta\); 1 + cot ²\(\ \theta\) = cosec²\(\ \theta\).

They help students quickly recall stan dard values essential for solving exam problems.

Usin g calculators, ignoring diagrams, and misidentifying opposite/adjacent sides.

Visualizing the triangle reduces mistakes and clarifies angle–side relationships.

Understan d the geometric meaning rather than memorizing formulas blindly.

Identify the angle first; the side directly across it is opposite, and the side touching it (except hypotenuse) is adjacent.

Yes, because all angles considered (0\(^\circ\)–90\(^\circ\)) lie in the first quadrant.

It leads to understan ding functions, calculus, vectors, coordinate geometry, and physics waveforms.

sin 30\(^\circ\) = 1/2, derived from the geometry of a 30\(^\circ\)-60\(^\circ\) right triangle.

Yes, cartography uses trigonometric principles to estimate distan ces and directions.

To introduce students to trigonometric ratios, identities, and basic applications in a right triangle.

Stan dard values, complementary angles, identities, and basic height-distan ce problems.

An angle greater than 0\(^\circ\) and less than 90\(^\circ\).

Finding heights usin g the angle of elevation and a known distan ce.

It teaches ratio relationships, spatial interpretation, and analytical problem-solving.

Recent posts


    Important Links

    Leave Your Message & Comments