Exercise 1.3

Continue Reading →
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.2

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.1

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
September 5, 2025  |  By Academia Aeternum

Exercise 1.3

Maths - Exercise
    1. Write the following in decimal form and say what kind of decimal expansion each has :
      1. \(\frac{36}{100}\)
        Solution:
        \(\frac{36}{100} = 0.36\Rightarrow\color{blue}{\text{Terminating}}\\\\\)
      2. \(\frac{1}{11}\)
        Solution:
        \(\scriptsize\frac{1}{11}=0.\overline{09}\)$$ \require{enclose} \begin{array}{rll} 0.0909\ldots &&\\ 11\enclose{longdiv}{1.0000\phantom{0}} &&\\ \underline{99\phantom{0000}} &&\\ 100\phantom{000}&&\\\underline{99\phantom{000}}&&\\1\phantom{000}&&\\\vdots \end{array} $$

        Non-Terminating, repeating

    2. \(4\frac{1}{8}\)
      Solution:
      \(\scriptsize 4\frac{1}{8}=\frac{33}{8}\)=4.125 \[ \require{enclose} \begin{array}{r} 4.125\phantom{000} &&\\ 11\enclose{longdiv}{33.000}\phantom{00} &&\\ \underline{32\phantom{00}} \phantom{0000}&&\\ 10\phantom{00000}&&\\\underline{8\phantom{00}}\phantom{000}&&\\20\phantom{0000}&&\\ \underline{20\phantom{00}}\phantom{00}&& \\0\phantom{0000} && \\ \end{array} \] Terminating
    3. \(\frac{3}{13}\)
      Solution:
      \(\scriptsize\frac{3}{13}=0.\overline{230769}\) \[ \require{enclose} \begin{array}{r} 0.230769\ldots &&\\ 13\enclose{longdiv}{3.00000000} &&\\ \underline{26\phantom{0000000}} &&\\ 40\phantom{000000}&&\\ \underline{39\phantom{00000}}&&\\100\phantom{000}&&\\ \underline{91\phantom{000}}&& \\90\phantom{00}&& \\\underline{78\phantom{00}}&&\\120\phantom{0} &&\\\underline{117}\phantom{0} &&\\ 3\phantom{0} &&\\ \vdots && \end{array} \]

      Non-Terminating, Repeating

    4. \(\frac{2}{11}\)
      Solution:
      \(\scriptsize\frac{2}{11}=0.\overline{18}\)\[ \require{enclose} \begin{array}{rll} 0.1818\ldots &&\\ 11\enclose{longdiv}{2.000\phantom{00}} &&\\ \underline{11\phantom{00000}} &&\\ 90\phantom{0000}&&\\ \underline{88\phantom{0000}}&&\\20\phantom{000}&&\\ \vdots && \end{array} \]

      Non-Terminating, Repeating

    5. \(\frac{329}{400}\)
      Solution:
      \(\scriptsize\frac{329}{400}=0.08225\)\[ \require{enclose} \begin{array}{rll} 0.08225\phantom{0000} &&\\ 400\enclose{longdiv}{329.00\phantom{00000}} &&\\ \underline{320\phantom{0000000}} &&\\ 900\phantom{000000}&&\\ \underline{800\phantom{000000}}&&\\1000\phantom{00000}&&\\ \underline{800\phantom{00000}}&&\\2000\phantom{0000}&&\\ \underline{2000\phantom{0000}}&&\\0\phantom{0000}&&\\ \end{array} \]

      Terminating

    6.  
    7. You know that \(\frac{1}{7} = 0.\overline{142857}\). Can you predict what the decimal expansions of \(\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}\) are, without actually doing the long division? If so, how?
      Solution:
      It is given that \[ \begin{align*} \scriptsize\frac{1}{7} &\scriptsize= 0.\overline{142857} \\ \scriptsize\Rightarrow \\ \scriptsize\frac{2}{7} &\scriptsize= 2\times\left(\frac{1}{7}\right) = 2\times 0.\overline{142857} = 0.\overline{285714} \\ \scriptsize\frac{3}{7} &\scriptsize= 3\times\left(\frac{1}{7}\right) = 3\times 0.\overline{142857} = 0.\overline{428571} \\ \scriptsize\frac{4}{7} &\scriptsize= 4\times\left(\frac{1}{7}\right) = 4\times 0.\overline{142857} = 0.\overline{571428} \\ \scriptsize\frac{5}{7} &\scriptsize= 5\times\left(\frac{1}{7}\right) = 5\times 0.\overline{142857} = 0.\overline{714285} \\ \scriptsize\frac{6}{7} &\scriptsize= 6\times\left(\frac{1}{7}\right) = 6\times 0.\overline{142857} = 0.\overline{857142} \end{align*} \]
    8. Express the following in the form \(\frac{p}{q}\), where p and q are integers and q ≠ 0
      1. \(0.\bar{6}\)
        Solution:
        \[\begin{align}\scriptsize\text{Let } x &\scriptsize= 0.\overline{6}\\\ \scriptsize\Rightarrow x &\scriptsize= 0.6666\ldots\tag{1}\\ \scriptsize10x &\scriptsize=6.6666\ldots\tag{2} \end{align}\] Subtracting (1) from (2): \[ \require{cancel} \begin{aligned} \scriptsize10x &\scriptsize= 6.6666\ldots\\\scriptsize x &\scriptsize= 0.6666\ldots \\ \hline \scriptsize9x &\scriptsize= 6 \\ \scriptsize x &\scriptsize= \frac{\cancelto{2}6}{\cancelto{3}{9}} = \frac{2}{3} \end{aligned}\]
      2. \(0.4\bar{7}\)

        Solution:
        \[ \begin{align} \scriptsize\text{Let } x &\scriptsize= 0.4\overline{7} \\ \scriptsize\Rightarrow x &\scriptsize= 0.47777\ldots \tag{1} \\ \scriptsize10x &\scriptsize= 4.77777\ldots \tag{2} \\ \scriptsize100x &\scriptsize= 47.77777\ldots \tag{3} \end{align} \] Subtracting eqn (2) from eqn (3): \[ \begin{align} \scriptsize100x &\scriptsize= 47.7777\ldots \\\scriptsize10x&\scriptsize=04.7777\ldots \\\hline \scriptsize90x &\scriptsize= 43 \\ \scriptsize x &\scriptsize= \frac{43}{90} \end{align} \]
      3. \(0.\overline{001}\\\)
        Solution:
        \[\begin{align}\scriptsize \text{let } x&\scriptsize=0.\overline{001}\\\Rightarrow\scriptsize x&\scriptsize= 0.001001001\ldots\tag{1}\\ \end{align}\] Multiplying both side of eqn (1) by 1000 \[\begin{align} \scriptsize1000x&\scriptsize=1.001001\ldots\tag{2}\\ \end{align}\] Subtracting eqn(1) from eqn(2): \[\begin{align}\scriptsize1000x&\scriptsize=1.001001\ldots\\\scriptsize x&\scriptsize=0.001001\ldots\\\hline\scriptsize 999x&\scriptsize=1\\ \scriptsize x&\scriptsize=\frac{1}{999}\\\\\scriptsize\text{hence, } 0.\overline{001}&\scriptsize = \frac{1}{999} \end{align} \]
  • Express 0.99999... in the form \(\frac{p}{q}\). Are you surprised by your answer? With your teacher and classmates, discuss why the answer makes sense.
    Solution:
    \[ \require{cancel} \begin{align} \text{let } x &=0.99999\ldots\tag{1}\end{align}\] Multiplying both side of eqn (1) by 10 \[\begin{align}10x &=9.99999\ldots\tag{2}\end{align}\] Subtracting eqn(1) from eqn(2) \[\begin{align}10x &=9.99999\ldots\\x &=0.99999\ldots\\\hline 9x &=9\\ x &=\frac{\cancel{9}}{\cancel{9}}=1\\\\\text{hence, } 0.99999\ldots& = 1 \end{align} \]
  • What can the maximum number of digits be in the repeating block of digits in the decimal expansion of \( \frac{1}{17}\) ? Perform the division to check your answer.
    Solution:
    \(\scriptsize \require{enclose} \begin{array}{rlc} &&\phantom{000000000}0.588235294117647\\ && \phantom{0000000}17\enclose{longdiv}{1.000000000000000}\\&& \underline{85\phantom{00}}\\&&150\phantom{0}\\&& \underline{136\phantom{0}}\\&&\phantom{0}140\\&& \phantom{000}\underline{136\phantom{0}}\\&&\phantom{0000}40\phantom{}\\&& \phantom{000000}\underline{34\phantom{00}}\\&&\phantom{0000000}60\\&& \phantom{000000000}\underline{51\phantom{00}}\\&&\phantom{000000000}90\\&& \phantom{00000000000}\underline{85\phantom{00}}\\&&\phantom{00000000000}50\\&& \phantom{0000000000000}\underline{34\phantom{00}}\\&&\phantom{000000000000}160\\&& \phantom{00000000000000}\underline{153\phantom{00}}\\&&\phantom{000000000000000}70\\&& \phantom{00000000000000000}\underline{68\phantom{00}}\\&&\phantom{00000000000000000}20\\&& \phantom{0000000000000000000}\underline{17\phantom{00}}\\&&\phantom{000000000000000000}130\\&& \phantom{00000000000000000000}\underline{119\phantom{00}}\\&&\phantom{00000000000000000000}110\\&& \phantom{00000000000000000000}\underline{102}\\&&\phantom{00000000000000000000000}80\\&& \phantom{0000000000000000000000000}\underline{68}\phantom{00}\\&&\phantom{0000000000000000000000000}120\\&& \phantom{000000000000000000000000000}\underline{119\phantom{00}}\\&&\phantom{0000000000000000000000000000}1\\&& \end{array} \) \[\] \(\frac{1}{17}=0.\overline{588235294117647}\)


  • Look at several examples of rational numbers in the form \(\frac{p}{q}\) (q ≠ 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
    Solution:
    let rational numbers be \(\frac{1}{2}, \frac{1}{4} ,\frac{1}{5} ,\frac{1}{8}, \frac{3}{10}\text{ and } \frac{2}{5}\) with terminating decimals. In these cases q={2,4,5,8, 10} we can observe that \(2=2\times 1\\4=2\times 2\times 1\\8=2\times 2\times 2\times 1\\5=5\times 1\\10=2\times 5\times 1\) all have either 2^n or 5^n or both as a factor. we can conclude that the prime factorisation of q has only powers of 2 or powers of 5 or both  
  • Write three numbers whose decimal expansions are non-terminating non-recurring.Solution:
    1. \(\pi\approx 3.1415926535\ldots\)
    2. \(e\approx 2.7182818284\ldots\)
    3. \(\sqrt[2]{2}\approx 1.4142135623\ldots\)
  • Find three different irrational numbers between the rational numbers \(\frac{5}{7} \text{ and } \frac{9}{11}\)
    Solution:
    To find three different irrational numbers between the rational numbers \(\frac{5}{7} \approx 0.7143 \text{ and }\\\frac{9}{11}\approx 0.8181\) We need to choose irrational numbers that fall within that interval. In the last question, we already find values of irrational numbers \(\pi, e \text{ and }\sqrt{2}\), we will subtract any number from these to get a value between the given range \(\begin{align}\pi-2.4&\approx 0.7415\ldots\\\sqrt{2}-0.7 &\approx 0.8142\ldots\\e-2&\approx 0.7182818284\ldots\end{align}\)

    Irrational Number - Rational Number is always an Irrational Number.

  • Classify the following numbers as rational or irrational :
    1. \(\sqrt{23}\)
      Solution:
      \(\scriptsize \begin{array}{r|l} & 4.7958315\ldots\\\hline 4&\overline{23}\\ +4&16\\\hline 87&\phantom{0}700\\+7&\phantom{0}609\\\hline 949&\phantom{000}9100\\+9 & \phantom{000}8541\\\hline 9585 & \phantom{0000}55900\\+5 & \phantom{0000}47925\\\hline 95908 & \phantom{00000}797500\\+8 &\phantom{00000}767264\\\hline 959163&\phantom{000000}3023600\\+3&\phantom{000000}2877489\\\hline 9591661&\phantom{0000000}15611100\\+1&\phantom{00000000}9591661\\\hline 95916625 &\phantom{00000000}601943900\\+5 & \phantom{00000000}479583125\\\hline 95916630 &\phantom{00000000}12136087500\\&\phantom{0000000000000000000}\vdots \end{array} \) \[\] \(\sqrt{23} = 4.7958315\ldots\) \[\] \(\Rightarrow\)Non Repeating, Non Terminating decimal; hence Irrational Number
    2. \[ \begin{array}{r|l} \scriptsize 5 & \scriptsize 225 \\ \hline \scriptsize 5 & \scriptsize 45 \\ \hline \scriptsize 3 & \scriptsize 9 \\ \hline \scriptsize 3 & \scriptsize 3 \end{array} \]
      \( \begin{align*} \scriptsize\sqrt{225} &\scriptsize= \sqrt{5\times 5\times 3\times 3} \\ &\scriptsize= 5\times 3 \\ &\scriptsize= 15 \\ \Rightarrow\;\; \color{blue}{\text{Rational Number}} \end{align*} \)
    3. 0.3796 \(\Rightarrow\color{blue}{\text{Terminating Decimal,}\\\text{hence Rational Number}}\)
    4. 7.478478 \(\Rightarrow 7.478478=7.\overline{478} \Rightarrow\color{blue}{\text{Repeating,}\\\text{ Non- Terminating decimal,}\\\text{Hence Rational Number}}\)
    5. 1.101001000100001... \(\Rightarrow\) Non-Repeating and Non-Terminating Decimal, hence Irrational Number
  • Frequently Asked Questions

    A number system is a way of expressing numbers using symbols and rules. It includes natural numbers, whole numbers, integers, rational, and irrational numbers.

    Real numbers include both rational and irrational numbers that can be represented on the number line.

    Rational numbers are numbers that can be expressed as a fraction p/q, where p and q are integers and \(q \neq 0.\)

    Irrational numbers cannot be written as a simple fraction and have non-terminating, non-repeating decimals, like v2 or p.

    Rational numbers can be expressed as p/q, while irrational numbers cannot. Rational decimals terminate or repeat; irrational decimals do not.

    Natural numbers are counting numbers starting from 1, 2, 3, and so on.

    Whole numbers include all natural numbers and 0, i.e., 0, 1, 2, 3, 4, ...

    Integers include all whole numbers and their negatives, such as … -3, -2, -1, 0, 1, 2, 3 …

    The decimal expansion of rational numbers is either terminating or non-terminating repeating.

    The decimal expansion of irrational numbers is non-terminating and non-repeating.

    Yes, every real number, whether rational or irrational, can be represented on the number line.

    All rational numbers are real, but not all real numbers are rational. Real numbers include both rational and irrational types.

    Construct a right-angled triangle with both legs of 1 unit each; the hypotenuse represents v2 when plotted on the number line.

    A non-terminating decimal continues infinitely without ending, like 0.333... or 0.142857142857...

    A repeating decimal has digits that repeat in a pattern, for example, 0.666… or 0.142857142857…

    A terminating decimal has a finite number of digits after the decimal point, like 0.5 or 0.125.

    The laws of exponents include: a^m × a^n = a^(m+n), a^m ÷ a^n = a^(m-n), (a^m)^n = a^(mn), and a^0 = 1.

    For any non-zero number, a° = 1.

    The product of a number and its reciprocal is always 1.

    A number line visually represents all real numbers in order, showing their relative positions.

    Yes, 0 is a rational number because it can be expressed as 0/1.

    A rational number is in standard form when its denominator is positive, and the numerator and denominator have no common factors except 1.

    Surds are irrational numbers that can be expressed in root form, such as v2, v3, and v5.

    Natural ? Whole ? Integers — meaning each set is contained in the next larger one.

    Closure property states that the result of an operation on numbers in a set remains within that set.

    Yes, the sum of two rational numbers is always a rational number.

    No, the sum of two irrational numbers may or may not be irrational (e.g., v2 + (-v2) = 0).

    Yes, all terminating decimals can be expressed as fractions, so they are rational.

    No, p is an irrational number because its decimal expansion is non-terminating and non-repeating.

    Real numbers are used in measurement, money, temperature, and scientific calculations involving both rational and irrational values.

    A number represents quantity or value, while a numeral is the symbol used to express that number.

    Prime numbers are natural numbers greater than 1 that have only two factors — 1 and the number itself.

    Composite numbers have more than two factors, such as 4, 6, 8, and 9.

    Euclid’s division lemma states that for any integers a and b, there exist unique integers q and r such that a = bq + r, where 0 = r < b.

    By repeatedly applying a = bq + r, the last non-zero remainder gives the HCF of two numbers.

    For two numbers a and b, HCF × LCM = a × b.

    Terminating decimals are rational numbers whose denominators (in lowest form) have prime factors 2, 5, or both.

    Rational numbers whose denominators (in lowest form) have prime factors other than 2 or 5 give non-terminating repeating decimals.

    The base is the number of unique digits used to represent numbers in a system. For example, base 10 uses digits 0–9.

    The binary system is a base-2 system using only 0 and 1, commonly used in computers.

    The decimal system is a base-10 system using digits from 0 to 9, most commonly used in mathematics.

    Examples include v2, v3, p, and e, which have non-repeating, non-terminating decimals.

    If a number can be expressed as p/q, it’s rational; otherwise, it’s irrational.

    No, dividing two integers may not always result in an integer, e.g., 3 ÷ 2 = 1.5.

    It means plotting each real number at a specific position corresponding to its value on a line.

    A negative exponent means reciprocal of the base raised to the positive exponent, e.g., a?n = 1/an.

    Laws include: a^(1/n) = nva and a^(m/n) = (nva)^m.

    Number systems help perform calculations, comparisons, and quantitative measurements efficiently.

    It is used to compute the highest common factor (HCF) of two given numbers.

    Construct a right triangle with sides 2 units and 1 unit; the hypotenuse equals v5 when placed on the number line.

    Recent posts


      Important Links

      Leave Your Message & Comments