Exercise 2.3

NCERT Class 9 Maths Polynomials Exercise 2.3 solutions focus on factorisation methods that expand upon the concepts from previous exercises. This exercise explains the Factor Theorem with examples and shows how to apply it in solving polynomial equations. Students also learn factorisation by the Factor Theorem and the split middle term method of factorisation for quadratic expressions. With clear explanations, solved examples, and step-by-step solutions, this exercise helps students master the basics of polynomial factorisation. At the end of the post, important links for notes, extra questions, and MCQ quizzes are provided to strengthen fundamentals and practice effectively.

Continue Reading →
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.2

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.1

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
September 15, 2025  |  By Academia Aeternum

Exercise 2.3

Maths - Exercise

1. Determine which of the following polynomials has (x + 1) a factor :

Solution:
zero of \(\left( x+1\right)=-1\)
  1. \(p\left( x\right) =x^{3}+x^{2}+x+1\\\)
    $$\begin{aligned} p\left( -1\right) &&=\left( -1\right) ^{3}+\left( -1\right) ^{2}-1+\\&&=-1+1-1+1\\&&=0\end{aligned} $$ \(\therefore x+1\) is a factor of \(p\left( x\right) =x^{3}+x^{2}+x+1\)


  2. \(p\left( x\right) =x^{4}+x^{3}+x^{2}+x+1\)
    $$\begin{aligned} p\left( -1\right) &=\left( -1\right) ^{4}+\left( -1\right) ^{3}+\left( -1\right) ^{2}-1+1\\ &=1-1+1-1+1\\ &=3-2\\ &=1\end{aligned}$$ \(\therefore x+1\) is not a factor of \(p\left( x\right) =x^{4}+x^{3}+x^{2}+x+1\)


  3. \(p\left( x\right) =x^{4}+3x^{3}+3x^{2}+x+1\)
    $$\begin{aligned} p\left( -1\right) &=\left( -1\right) ^{4}+3\left( -1\right) ^{3}+3\left( -1\right) ^{2}-1+1\\ &=1-3\left( -1\right) +3\left( 1\right) -1+1\\ &=1+3+3-1+1\\ &=8-1\\ &=7\end{aligned}$$ \(\therefore x+1\) is not a factor of \(p\left( x\right) =x^{4}+3x^{3}+3x^{2}+x+1\)

  4. \(p\left( x\right)=x^{3}-x^{2}-\left( 2+\sqrt{2}\right) x+\sqrt{2}\) $$\begin{aligned} p\left( -1\right) &=\left( -1\right) ^{3}-\left( -1\right) ^{2}-\left( 2+\sqrt{2}\right) \left( -1\right) +\sqrt{2}\\ &=-1-1+\left( 2+\sqrt{2}\right) +\sqrt{2}\\ &=-2+2+\sqrt{2}+\sqrt{2}\\ &=2\sqrt{2}\end{aligned}$$ \(\therefore x+1\) is not a factor of \(p\left( x\right)=x^{3}-x^{2}-\left( 2+\sqrt{2}\right) x+\sqrt{2}\)

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

  1. $$\begin{aligned} g\left( x\right) &=x+1\\ g\left( 0\right) \Rightarrow x&=-1\\ P\left( -1\right) &=2\left( -1\right) ^{3}+\left( -1\right) ^{2}-2\left( -1\right) -1\\ &=-2+1+2-1\\ &=3-3\\ &=0\end{aligned}$$ \(\therefore g(x)\) is a factor of \(p(x)\)

  2. $$\begin{aligned}p\left( x\right) &=x^{3}+3x^{2}+3x+1\\ g\left( x\right) &=x+2\\ g\left( 0\right) \Rightarrow x&=-2\\ p\left( -2\right) &=\left( -2\right) ^{3}+3\left( -2\right) ^{2}+3\left( -2\right) +1\\ &=-8+3\times 4-6+1\\ &=-8+12-6+1\\ &=13-14\\ &=-1\end{aligned}$$ \(\therefore g(x)\) is not a factor of \(p(x)\)

  3. $$\begin{aligned}p\left( x\right) &=x^{3}-4x^{2}+x+6\\ g\left( x\right) &=x-3\\ g\left( 0\right) \Rightarrow x&=3\\ p\left( 3\right) &=\left( 3\right) ^{3}-4\left( 3\right) ^{2}+3+6\\ &=27-4\times 9+3+6\\ &=27-36+9\\ &=36-36\\ &=0\end{aligned}$$ \(\therefore g(x)\) is a factor of \(p(x)\)

3. Find the value of k, if x – 1 is a factor of p(x) in each of the following cases:

  1. \(p\left( x\right) =x^{2}+x+k\) $$\begin{aligned} p\left( 1\right) &=\left( 1\right) ^{2}+1+k\\ 0&=1+1+k\\ \Rightarrow k+2&=0\\ k&=-2\end{aligned}$$

  2. \(\left( x\right) =2x^{2}+kx+\sqrt{2}\\\) $$\begin{aligned}p P\left( 1\right) &=2\cdot 1^{2}+k\cdot 1+\sqrt{2}\\ 0&=2+k+\sqrt{2}\\ 0&=k+\left( 2+\sqrt{2}\right) \\ \Rightarrow k+\left( 2+\sqrt{2}\right) &=0\\ k&=-\left( 2+\sqrt{2}\right) \end{aligned}$$

  3. \(p\left( x\right) =kx^{2}-\sqrt{2}x+1\\\) $$\begin{aligned} p\left( 1\right) &=k\left( 1\right) ^{2}-\sqrt{2}\cdot 1+1\\ 0&=k-\sqrt{2}+1\\ \Rightarrow k-\sqrt{2}+1&=0\\ \Rightarrow k&=\sqrt{2}-1\end{aligned}$$
  4. \(p\left( x\right) =kx^{2}-3x+k\\\) $$\begin{aligned} p\left( 1\right) &=k\left( 1\right) ^{2}-3\left( 1\right) +k\\ 0&=k-3+k\\ 0&=2k-3\\ \Rightarrow 2k-3&=0\\ 2k&=3\\ k&=3/2\end{aligned}$$

4. Factorise :

  1. $$\begin{aligned}12x^{2}-7x+1\\ &=12\left( x^{2}-\dfrac{7}{12}x+\dfrac{1}{12}\right) \\ &=12p\left( x\right) \\ p\left( x\right) &=x^{2}-\dfrac{7}{12}+\dfrac{1}{12}\quad\color{blue}\Rightarrow\left( x+a\right) \left( x+b\right) =x^{2}+\left( a+b\right) x+ab\end{aligned}$$ \(\text{Comparing constant term with \(p(x)\Rightarrow\)} ab=\frac{1}{12}\) $$ Let~us~find~the~possible~values~of a~ and ~b~which~gives~us ~ab=\frac{1}{12} ~ and~ a+b=\frac{7}{12}$$ $$\begin{aligned} \left( a,b\right) &=\left( \pm 1,\pm \frac{1}{12}\right) ,\left( \pm \dfrac{1}{2},\pm \dfrac{1}{6}\right) ,\left( \pm \dfrac{1}{3},\pm \dfrac{1}{4}\right)\end{aligned}$$ $$\text{Among these values only } \left( \pm \dfrac{1}{3},\pm \dfrac{1}{4}\right)\text{ can give us required result when \(p(x)\) may be zero }$$ $$\begin{aligned} p\left( x\right) &=x^{2}-\dfrac{7}{12}x+\dfrac{1}{12}\\ p\left( \frac{1}{3}\right) &=\left( \frac{1}{3}\right) ^{2}-\dfrac{7}{12}\times \dfrac{1}{3}+\dfrac{1}{12}\\ &=\dfrac{1}{9}-\dfrac{7}{36}+\dfrac{1}{12}\\ &=\dfrac{4-7+3}{36}\\ &=\dfrac{7-7}{36}\\ &=0\\ \color{blue}\therefore\quad \left( x-1/3\right)\text{ is a factor of } p(x) \end{aligned}$$ $$\require{cancel}\begin{aligned}p\left( \frac{1}{4}\right) &=\left( \frac{1}{4}\right) ^{2}-\dfrac{7}{12}\left( \frac{1}{4}\right) +\dfrac{1}{12}\\ &=\dfrac{1}{16}-\dfrac{7}{48}+\dfrac{1}{12}\\ &=\dfrac{3-7+4}{48}\\ &=\dfrac{7-7}{48}\\ &=0\\ \color{blue}\therefore\quad \left( x-1/4\right) \text{is another factor of }p\left( x\right) \\ \therefore\quad p\left( x\right) &=\left( x-\frac{1}{3}\right) \left( x-\frac{1}{4}\right) \\ 12\cdot p\left( x\right) &=12\left( x-\frac{1}{3}\right) \left(x- \frac{1}{4}\right) \\ &=12\left( \dfrac{3x-1}{3}\right) \left( \dfrac{4x-1}{4}\right) \\ &=\dfrac{\cancel{12}}{\cancel{12}}\left( 3x-1\right) \left( 4x-1\right) \\ &=\left( 3x-1\right) \left( 4x-1\right) \end{aligned}$$

  2. \(2x^{2}+7x+3\\\) $$\begin{aligned}2x^{2}+7x+3\\ &=2\left( x^{2}+\dfrac{7}{2}x+\dfrac{3}{2}\right) \\ &=2p\left( x\right) \\ p\left( x\right) &=x^{2}+\dfrac{7}{2}x+\dfrac{3}{2}\quad\Rightarrow\color{blue}\left( x+a\right) \left( x+b\right) =x^{2}+\left( a+b\right) x+ab\\\end{aligned}$$ $$\text{ Let us find all possible values of } a ~ and ~ b \text{ such that } a.b=3/2 ~and~ a + b=7/2\left( a,b\right)$$ $$\begin{aligned} \left( a,b\right) &=\left( \pm 1,\pm \frac{3}{2}\right) ,\left( \pm \frac{1}{2},\pm 3\right) \\ &=\frac{1}{2},\pm 1,\pm \frac{3}{2},\pm 3\\ p\left( x\right) &=x^{2}+\dfrac{7x}{2}+\dfrac{3}{2}\\\\ p\left( \frac{-1}{2}\right) &=\left( -\frac{1}{2}\right) ^{2}+\dfrac{7x}{2}\left( \frac{-1}{2}\right) +\frac{3}{2}\\ &=\dfrac{1}{4}-\dfrac{7}{4}+\dfrac{3}{2}\\ &=\dfrac{1-7+6}{4}\\ &=\dfrac{7-7}{4}\\ &=0\\ \color{blue}\therefore\quad \left( x+\dfrac{1}{2}\right) is~a~factor~of~p\left( x\right) \\ p\left( x\right) &=x^{2}+\dfrac{7x}{2}+\dfrac{3}{2}\\ P\left( -1\right) &=\left( -1\right) ^{2}+\dfrac{7x}{2}\left( -1\right) +\dfrac{3}{2}\\ &=1-\dfrac{7}{2}+\dfrac{3}{2}\\ &=\dfrac{2-7+3}{2}\\ &=\dfrac{5-7}{2}\\ &=-\dfrac{3}{2}\\ &\neq 0\\ p\left( \frac{-3}{2}\right) &=\left( \frac{-3}{2}\right) ^{2}+\dfrac{7}{2}\left( \frac{-3}{2}\right) +\dfrac{3}{2}\\ &=\dfrac{9}{4}-\dfrac{21}{4}+\dfrac{3}{2}\\ &=\dfrac{\left( 9-21+6\right) }{4}\\ &=\dfrac{15-21}{4}\\ &=-\dfrac{6}{4}\\ &\neq 0\end{aligned}$$ $$\begin{aligned}p\left( -3\right) &=\left( -3\right) ^{2}+\dfrac{7}{2}\left( -3\right) +\dfrac{3}{2}\\ &=9-\dfrac{7}{2}\times 3+\dfrac{3}{2}\\ &=9-\dfrac{21}{2}+\dfrac{3}{2}\\ &=\dfrac{18-21+3}{2}\\ &=\dfrac{21-21}{2}\\ &=0\\ \Rightarrow \left( x+3\right) ~is~another~factor\\ p\left( x\right) &=\left( x+\dfrac{1}{2}\right) \left( x+3\right) \\ 2p\left( x\right) &=\dfrac{2\left( 2x+1\right) \left( x+3\right) }{2}\\ 2x^{2}+7x+3&=\left( 2x+1\right) \left( x+3\right) \end{aligned}$$ By mid-term Splitting Method: $$2x^{2}+7x+3$$ $$p+q=7 ~\&~ pq =6 $$ If we can find two numbers p and q such that then we can factorise the polynomial pq = 6, possible value of p and q (P, q) \(\Rightarrow\) (1,6), (2, 3) pair (1,6) can give $$p+q=7$$ $$\begin{aligned}2x^{2}+7x+3\\ &=2x^{2}+x+6x+3\\ &=x\left( 2x+1\right) +3\left( 2x+1\right) \\ &=\left( 2x+1\right) \left( x+3\right) \end{aligned}$$

  3. \(6x^{2}+5x-6\\\) Let us find two numbers \(p\) and \(q\) such that \(p\cdot q=36\) and \(p+q=5\) $$\left( p,q\right) =\left( 1,36\right) ,\left( 2,18\right) ,\left( 3,12\right) ,\left( 4,9\right) ,\left( 6,6\right) $$ $$\begin{aligned}~of~these~4,9~will~give~us~p-q&=5~so,\\ 6x^{2}+5x-6&=6x^{2}+\left( 9-4\right) x-6\\ &=6x^{2}+9x-4x-6\\ &=3x\left( 2x+3\right) -2\left( 2x+3\right) \\ &=\left( 2x+3\right) \left( 3x-2\right) \end{aligned}$$

  4. \(3x^{2}-x-4\\\) Let us find values-of p and q, such that $$\begin{aligned}p+q&=-1\\ pq&=-12\end{aligned}$$ Let us find possible values of p q $$\begin{aligned}\left( p,q\right) &=\left( \pm 1,\pm 12\right) ,\left( \pm 2,\pm 6\right) ,\left( \pm 3,\pm 4\right) \\ \left( p,q\right) &=\left( 3,-4\right) \\\\ 3x^{2}-x-4 &=3x^{2}+3x-4x-4\\ &=3x\left( x+1\right) -4\left( x+1\right) \\ &=\left( x+1\right) \left( 3x-4\right) \end{aligned}$$ By Factor Theorem: $$\begin{aligned}3x^{2}-x-4 &=3\left( x^{2}-\dfrac{x}{3}-\dfrac{4}{3}\right) \\ &=3\cdot p\left( x\right) \\ p\left( x\right) &=x^{2}-\dfrac{x}{3}-\dfrac{4}{3}\quad\Rightarrow\color{blue}\left( x+a\right) \left( x+b\right) =x^{2}+\left( a+b\right) x+ab\\ ab&=-4/3\end{aligned}$$ Let us find possible values of \(a~and~b\) by comparing constant value of \(p(x)\) $$\begin{aligned}\left( a,b\right) &=\left( \pm 1,\pm \frac{4}{3}\right) ,\left( \pm 2,\pm \dfrac{2}{3}\right) \\ &=\pm 1,\pm \frac{4}{3},\pm \frac{2}{3},\pm 2\\ p\left( -1\right) &=1^{2}-\dfrac{1}{3}\left( -1\right) -\dfrac{4}{3}\\ &=1+\dfrac{1}{3}-\dfrac{4}{3}\\ &=\dfrac{3+1-4}{3}\\ &=\dfrac{4-4}{3}\\ &=0\\ \color{blue}\therefore\quad \left( x+1\right) \text{ is a factor of }p(x)\end{aligned}$$ $$\begin{aligned}p\left( \frac{-4}{3}\right) &=\left( \dfrac{4}{3}\right) ^{2}-\dfrac{1}{3}\left( -\dfrac{4}{3}\right) -\dfrac{4}{3}\\ &=\dfrac{16}{9}+\dfrac{4}{9}-\dfrac{4}{3}\\ &=\dfrac{16+4-12}{9}\\ &=\dfrac{-8}{9}\neq 0\\ P\left( \dfrac{4}{3}\right) &=\left( \dfrac{4}{3}\right) ^{2}-\dfrac{1}{3}\left( \dfrac{4}{3}\right) -\dfrac{4}{3}\\ &=\dfrac{16}{9}-\dfrac{4}{9}-\dfrac{4}{3}\\ &=\dfrac{16-4-12}{9}\\ &=\dfrac{16-16}{9}\\ &=0\\ \therefore\quad\color{blue} \left( x-\frac{4}{3}\right)\text{ is another factor of }p(x) \end{aligned}$$ $$\require{cancel}\begin{aligned}p\left( x\right) &=\left( x+1\right) \left( x-\dfrac{4}{3}\right) \\ &=\dfrac{\left( x+1\right) \left( 3x-4\right) }{3}\\ 3\cdot p\left( x\right) &=\cancel{3}\cdot\frac{\left( x+1\right) \left( 3x-4\right)}{\cancel{3}} \\ &=\left( x+1\right) \left( 3x-4\right) \end{aligned}$$

5. Factorise :

  1. \(x^{3}-2x^{2}-x+2\\\) $$\begin{aligned}x^{3}-2x^{2}-x+2 &=x^{2}\left( x-2\right) -1\left( x-2\right) \\ &=\left( x-2\right) \left( x^{2}-1\right) \\ &=\left( x-2\right) \left( x-1\right) \left( x+1\right) \end{aligned}$$

  2. \(x^{3}-3x^{2}-9x-5\\\) $$ \begin{aligned} x^{3}-3x^{2}-9x-5\\ \text{Let's find possible factors of 5} \pm 1,\pm\\ Let~p\left( x\right) &=x^{3}-3x^{2}-9x-5\\ p\left( -1\right) &=\left( -1\right) ^{3}-3\left( -1\right) ^{2}-9\left( -1\right) -5\\ &=-1-3+9-5\\&=9-9\\&=0\\ \therefore\quad\color{blue}\left( x+1\right)\text{ is a factor of }p(x)\\ \\ p\left( 1\right) &=1^{3}-3\cdot 1^{2}-9\cdot 1-5\\ &=1-4-9-5\\ &=-17\\ &\neq 0\\ p\left( -5\right) &=\left( -5\right) ^{3}-3\left( -5\right) ^{2}-9\left( -5\right) -5\\ &=125-3\times \left( -25\right) +45-5\\ &=125+75+45-5\\ &=240\\ &\neq 0\\ p\left( 5\right) &=5^{3}-3\cdot 5^{2}-9\left( 5\right) -5\\ &=125-3\times 25-45-5\\ &=125-75-50\\ &=0\\ \therefore\quad\color{blue}\left( x-5\right) ~is~another~factor\\\\ (x+1)(x-5)&=x^2-4x-5\\ \frac{x^{3}-3x^{2}-9x-5}{x^2-4x-5}&=(x+1)\\\\ \require{enclose} x+1\phantom{0000000}\\ x^2 -4x-5\enclose{longdiv}{x^{3}-3x^{2}-9x-5}\\ \underline {\_x^3-\_4x^2-\_5x}\phantom{0000}\\x^2-4x-5\phantom{0}\\ \underline{{\_x^2-\_4x-\_5}}\phantom{0}\\ \text{x }\quad\text{ x }\quad\text{ x}\phantom{0}\\\\ \color{blue}\therefore\quad (x+1) \text{is yet another factor of } p(x)\\ \therefore\quad x^{3}-3x^{2}-9x-5&=\left( x-5\right) \left( x+1\right) \left( x+1\right)\\ \end{aligned} $$
  3. \(x^{3}+13x^{2}+32x+20\\\) $$\begin{aligned}x^{3}+13x^{2}+32x+20\\ \text{Let's find possible factors of 20 }\\ \left( \pm 1,\pm 20\right) ,\left( \pm 2,\pm 10\right) ,\left( \pm 4,\pm 5\right) \\ p\left( x\right) &=x^{3}+13x^{2}+32x+0\\ P\left( -1\right) &=\left( -1\right) ^{3}-13\left( -1\right) ^{2}-32\left( -1\right) +20\\ &=-1+13-32+20\\ &=33-33\\ &=0\\ \color{blue}\therefore\quad \left( x+1\right) \text{ is a factor of }p(x)\\p\left( -2\right) &=\left( -2\right) ^{3}+13\left( -2\right) ^{2}+32\left( -2\right) +20\\ &=-8+13\times 4-32\times 2+2\\&=-8+52-64+20\\ &=-72+72\\ &=0\\ \color{blue}\therefore\quad\left( x+2\right)\text{is another factor of } p(x)\\ p\left( -4\right) &=\left( -4\right) ^{3}+13\left( -4\right) ^{2}+32\left( -4\right) +20\\ &=-64+13\times 16-128+20\\ &=-64+208-128+20\\ &=-192+228\\ &=36\\ &\neq 0\\ p\left( -5\right) &=\left( -s\right) ^{3}+13\left( -5\right) ^{2}+32\left( -5\right) +20\\ &=-125+13\times 25-160+20\\ &=-125+325-160+20\\ &=60\\ &\neq 0\\p\left( -10\right) &=\left( -10\right) ^{3}+13\left( -10\right) ^{2}+32\left( -10\right) +20\\ &=-1000+1300-320+20\\ &=-1320+1320\\ &=0\\ \color{blue}\therefore\quad x+10\text{ is yet another factor of }p(x)\\\\ x^{3}+13x^{2}+32x+2&=\left( x+1\right) \left( x+2\right) \left( x+10\right) \end{aligned} $$
  4. \(2y^{3}+y^{2}-2y-1\\\) $$\require{cancel} \begin{aligned}2y^{3}+y^{2}-2y-1 &=2\left( y^{2}+\dfrac{y^{2}}{2}-y-1/2\right) \\ 2p\left( y\right) &=y^{3}+\dfrac{y^{2}}{2}-y-\frac{1}{2}\\ p\left( y\right) &=y^{3}+\dfrac{y^{2}}{2}-y-\frac{1}{2}\\ p\left( -1\right) &=\left( -1\right) ^{3}+\dfrac{\left( -1\right) ^{2}}{2}-\left( -1\right) \frac{-1}{2}\\ &=-1+\frac{1}{2}+1-\frac{1}{2}\\ &=0\\ \color{blue}\therefore\quad y+1 \text{ is a factor of }p(y)\\ p\left( 1\right) &=\left( 1\right) ^{3}+\dfrac{1^{2}}{2}-1-1,2\\ &=1+\frac{1}{2}-1\frac{-1}{2}\\ &=0\\ \color{blue}\therefore\quad \left( y-1\right)\text{ is another factor of }p(y) \\ p\left( \frac{1}{2}\right) &=\left( \frac{1}{2}\right) ^{3}+\dfrac{\left( 1/2\right) ^{2}}{2}-1/2\frac{-1}{2}\\ &=\dfrac{1}{8}+\dfrac{1}{4\cdot 2}-1/2\frac{-1}{2}\\ &=\dfrac{1}{8}+\dfrac{1}{8}-1\\ &=\dfrac{1}{4}-1\\ &=-3/4\\ &\neq 0\\\\ p\left( -\frac{1}{2}\right) &=\left( \frac{-1}{2}\right) ^{3}+\dfrac{\left( \frac{-1}{2}\right) ^{2}}{2}-\left( -1/2\right) -1/2\\ &=\dfrac{-1}{8}+\dfrac{1}{8}+\frac{1}{2}\frac{-1}{2}\\ &=0\\ \color{blue}\therefore\quad \left( y+\frac{1}{2}\right)\text{ is yet another factor of }p(y) \\ p\left( y\right) &=\left( y-1\right) \left( y+1\right) \left( \dfrac{2y+1}{2}\right) \\ &=\dfrac{\left( y-1\right) \left( y+1\right) \left( 2y+1\right) }{2}\\ 2p\left( y\right) \Rightarrow \cancel{2}\dfrac{\left( y-1\right) \left( y+1\right) \left( 2y+1\right) }{\cancel{2}}&=\left( y-1\right) \left( y+1\right) \left( 2y+1\right) \end{aligned}$$

Recent posts


    Important Links

    Leave Your Message & Comments