Exercise 2.4

NCERT Class 9 Maths Polynomials Exercise 2.4 solutions focus on problems related to algebraic identities. Students practice finding products using identities, factorising algebraic expressions, expanding cubes, verifying identities, and solving word problems through step-by-step methods. The exercise also covers important concepts like the summation of cubes using identities and expansion of algebraic expressions, making it easier for learners to strengthen their fundamentals in polynomials. To support learning, the post provides solved examples, detailed explanations, and stepwise solutions. At the footer section, important links to notes, NCERT solutions, and MCQ quizzes are added for quick access to study materials. Students can also comment or ask their doubts directly through the given form for better understanding and interaction.

Continue Reading →
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.2

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.1

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
September 17, 2025  |  By Academia Aeternum

Exercise 2.4

Maths - Exercise

1. Use suitable identities to find the following products:

  1. (x + 4) (x + 10)
    Solution:
    $$\begin{aligned} \color{blue}\text{Using Identity: } \left( x+a\right) \left( x+b\right) &=\color{blue}x^{2}+\left( a+b\right) x+ab\\\\ a&=4;\\b&=10\\\\ \left( x+4\right) \left( x+10\right) &=x^{2}+\left( 4+10\right) x+10\times 4\\ &=x^{2}+14x+40\end{aligned}$$

  2. \(\left( x+8\right) \left( x-10\right)\) $$\begin{aligned} \color{blue}\text{Using Identity: } \left( x+a\right) \left( x+b\right) &=\color{blue}x^{2}+\left( a+b\right) x+ab\\\\ a&=8,\\b&=-10\\\\ \left( x+8\right) \left( x-10\right)&=x^{2}+\left( 8-10\right) x+8\times \left( -10\right) \\ &=x^{2}-2x-80\end{aligned}$$

  3. \(\left( 3x+4\right) \left( 3x-5\right)\) $$ \require{cancel}\begin{aligned} \color{blue}\text{Using Identity: }\left( x+a\right) \left( x+b\right)&=\color{blue}x^2+(a+b)x+ab\\ \\\left( 3x+4\right) \left( 3x-5\right) &=3\left( x+\frac{4}{3}\right) \cdot 3\left(x- \frac{5}{3}\right) \\ &=9\left[ \left( x+\frac{4}{3}\right) \left( x-\frac{5}{3}\right) \right] \\\\ &a=\frac{4}{3},\\&b=-\frac{5}{3}\\\\ &=9\left[ x^{2}+\left( \frac{4}{3}-\frac{5}{3}\right) x+\frac{4}{3}\cdot \left( -\frac{5}{3}\right) \right] \\ &=9 \left[ x^{2}+\left\{ \dfrac{\left( 4-5\right) }{3}x\right\} -\dfrac{20}{9}\right] \\ &=9\left[ x^{2}-\dfrac{x}{3}-\dfrac{20}{9}\right] \\ &=9\left[ \dfrac{9x^{2}-3x-20}{9}\right] \\ &=\dfrac{\cancel{9}}{\cancel{9}}\left[9x^{2}-3x-20\right] \\ &=9x^{2}-3x-20\end{aligned}$$

  4. \(\left( y^{2}+\dfrac{3}{2}\right) \left( y^{2}-\dfrac{3}{2}\right)\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a+b\right) \left( a-b\right) &=\color{blue}a^{2}-b^{2}\\\\ a&=y^{2},\\b&=\dfrac{3}{2}\\\\ \left( y^{2}+\dfrac{3}{2}\right) \left( y^{2}-\dfrac{3}{2}\right) &=\left( y^{2}\right) ^{2}-\left( \dfrac{3}{2}\right) ^{2}\\ &=y^{4}-\dfrac{9}{4}\end{aligned}$$

  5. \(\left( 3-2x\right) \left( 3+2x\right)\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a-b\right) \left( a+b\right) &=\color{blue}a^{2}-b^{2}\\\\ a&=3,\\b&=2x\\\\ \left( 3-2x\right) \left( 3+2x\right) &=3^{2}-\left( 2x\right) ^{2}\\ &=9-4x^{2}\end{aligned}$$

2. Evaluate the following products without multiplying directly:

  1. \(103\times 107\) $$\begin{aligned}103\times 107 &=\left( 100+3\right) \left( 100+7\right) \\ \color{blue}\text{Using Identity: }\left( x+a\right) \left( x+b\right) &=\color{blue}x^{2}+\left( a+b\right) x+ab\\\\ x&=100,\\a&=3,\\b&=7\\\\ x^{2}+\left( a+b\right) x+ab &=100^{2}+\left( 3+7\right) 100+3\times 7\\ &=10000+10\times 100+21\\ &=10000+1000+21\\ &=11021\end{aligned}$$

  2. \(95\times 96\) $$\begin{aligned}95\times 96 &=\left( 100-5\right) \left( 100-4\right)\\ \color{blue}\text{Using Identity: }\left( x+a\right) \left( x+b\right) &=\color{blue}x^{2}+\left( a+b\right) x+ab\\\\ x&=100,\\a&=-5,\\b&=-4\\\\ x^{2}+\left( a+b\right) x+ab &=\left( 100\right) ^{2}+\left( -5-4\right) 100+\left( -5\right) \left( -4\right) \\ &=10000+\left( -9\right) 100+20\\ &=10000-900+20\\ &=9120\end{aligned}$$

  3. \(104\times 96\) $$\begin{aligned}104\times 96 &= \left( 100+4\right) \left( 100-4\right) \\ \color{blue}\text{Using Identity: }\left( x+y\right) \left( x-y\right) &=\color{blue}x^{2}-y^{2}\\\\ x&=100,\\y&=4\\\\ x^{2}-y^{2}\\ =\left( 100\right) ^{2}-\left( 4\right) ^{2}\\ &=10000-16\\ &=9984 \end{aligned}$$

3. Factorise the following using appropriate identities:

  1. \(9x^{2}+6xy+y^{2}\) $$\begin{aligned}9x^{2}+6xy+y^{2} &=\left( 3x\right) ^{2}+2\cdot 3xy+y^{2}\\ \color{blue}\text{Using Identity: }a^{2}+2ab+b^{2}&=\color{blue}\left( a+b\right) ^{2}\\\\ a&=3x,\\b&=y\\\\ \left( 3x\right) ^{2}+2\cdot \left( 3x\right) +y^{2} &=\left( 3x+y\right) ^{2}\\ &=\left( 3x+y\right) \left( 3x+y\right) \end{aligned}$$

  2. \(4y^{2}-4y+1\) $$\begin{aligned}4y^{2}-4y+1 &=\left( 2y\right) ^{2}-2\cdot \left( 2y \right)\cdot 1 +1^{2}\\ \color{blue}\text{Using Identity: }a^{2}-2ab+b^{2}&=\color{blue}\left( a-b\right) ^{2}\\\\ a&=2y,\\b&=1\\\\ \left( 2y\right) ^{2}-2\left( 2y\right) +1^{2} &=\left( 2y-1\right) ^{2}\\ &=\left( 2y-1\right) \left( 2y-1\right) \end{aligned}$$

  3. \(x^{2}-\dfrac{y^{2}}{100}\) $$\begin{aligned}x^{2}-\dfrac{y^{2}}{100}\\ x^{2}-\left( \frac{y}{10}\right) ^{2}\\ \color{blue}\text{Using Identity: }a^{2}-b^{2}&=\color{blue}\left( a+b\right) \left( a-b\right) \\\\ a&=x,\\ b&=y/10\\\\ x^{2}-\left( y/10\right) ^{2}\\ \left( x+\frac{y}{10}\right) \left(x- \frac{y}{10}\right) \end{aligned}$$

4. Expand each of the following, using suitable identities:

  1. \(\left( x+2y+4z\right) ^{2}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}&=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\ \left( x+2y+4z\right) ^{2} &=x^{2}+\left( 2y\right) ^{2}+\left( 4z\right) ^{2}+2\cdot x\cdot 2y+2\cdot 2y\cdot 4z+2\cdot 4z\cdot x\\ &=x^{2}+4y^{2}+16z^{2}+4xy+16yz+8zx\end{aligned}$$

  2. \(\left( 2x-y+z\right) ^{2}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}&=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\ \left( 2x-y+z\right) ^{2} &=\left( 2x\right) ^{2}+\left( -y\right) ^{2}+z^{2}+2\cdot 2x\cdot \left( -y\right) +2\cdot \left( -y\right) z+2z\cdot 2x\\ &=4x^{2}+y^{2}+z^{2}-4xy-2yz+4zx\end{aligned}$$

  3. \(\left( -2x+3y+2z\right) ^{2}\\\\ \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\\\\)\( \left( -2x+3y+2z\right) ^{2}\\ \quad =\left( -2x\right) ^{2}+\left( 3y\right) ^{2}+\left( 2z\right) ^{2}+2\cdot \left( -2x\right) \cdot \left( 3y\right) +2\cdot 3y\cdot 2z+2\cdot 2z\cdot \left( -2x\right) \\ \quad =4x^{2}+9y^{2}+4z^{2}-12xy+12yz-8zx\)

  4. \( \left( 3a-7b-c\right) ^{2}\\\\ \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\\\\)\( \left( 3a-7b-c\right) ^{2}\\ \qquad =\left( 3a\right) ^{2}+\left( -7b\right) ^{2}+\left( -c\right) ^{2}+2\cdot 3a\cdot \left( -7b\right) +2\cdot \left( -7b\right) .\left( -c\right) +2\cdot \left( -c\right) \cdot \left( 3a\right) \\ \qquad =9a^{2}+49b^{2}+c^{2}-42ab+14bc-6ca\)

  5. \(\left( -2x+5y-3z\right) ^{2}\\\\ \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\\\\)\( \left( -2x+5y-3z\right) ^{2}\\ \qquad =\left( -2x\right) ^{2}+\left( 5y\right) ^{2}+\left( -3z\right) ^{2}+2\cdot \left( -2x\right) \cdot \left( 5y\right) +2\cdot \left( 5y\right) \cdot \left( -3z\right) +2\cdot \left( -3z\right) \cdot \left( -2x\right) \\ \qquad =4x^{2}+25y^{2}+9z^{2}-20xy-30yz+12zx\)

  6. \(\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1\right) ^{2}\\\\ \color{blue}\text{Using Identity: }\left( a+b+c\right) ^{2}=\color{blue}a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\\\\\) \(\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1\right) ^{2}\\\\ \qquad =\left( \dfrac{1}{4}a\right) ^{2}+\left( \dfrac{1}{2}b\right) ^{2}+1^{2}+2\cdot \dfrac{1}{4}a\cdot \left( -\dfrac{1}{2}b\right) +2\cdot \left( -\dfrac{1}{2}b\right) \cdot 1+2\cdot 1\cdot \left( \dfrac{1}{4}a\right) \\\\ \qquad =\dfrac{1}{16}a^{2}+\dfrac{1}{4}b^{2}+1+2\cdot \dfrac{1}{4}\cdot \left( -\dfrac{1}{2}\right) ab+2\cdot \left( \dfrac{-1}{2}\right) b+2\cdot \dfrac{1}{4}a\\\\ \qquad =\dfrac{a^{2}}{16}+\dfrac{b^{2}}{4}+1-\dfrac{ab}{4}-b+\dfrac{a}{2}\)

5. Factorise:

  1. \(4x^{2}+9y^{2}+16z^{2}+12xy+24yz+16xz\\\\\) \(4x^{2}+9y^{2}+16z^{2}+12xy+24yz+16xz\\ \qquad =\left( 2x\right) ^{2}+\left( 3y\right) ^{2}+\left( -4z\right) ^{2}+2\cdot 2x\cdot 3y+2\cdot 3y\cdot \left( -4z\right) +2\cdot \left( -4z\right) \left( 2x\right) \\\\ \color{blue}\text{Using Identity: }a^{2}+b^{2}+c^{2}+2ab+2bc+2ca=\color{blue}\left( a+b+c\right) ^{2}\\\\ \qquad =\left( 2x+3y-4z\right) ^{2}\\ \qquad =\left( 2x+3y-4z\right) \left( 2x+3y-4z\right) \)

  2. \(2x^{2}+y^{2}+8z^{2}-2\sqrt{2}xy+4\sqrt{2}yz-8xz\\\\\) \(2x^{2}+y^{2}+8z^{2}-2\sqrt{2}xy+4\sqrt{2}yz-8xz\\ \qquad =\left( -\sqrt{2}x\right) ^{2}+y^{2}+\left( 2\sqrt{2}z\right) ^{2}-2\cdot \left( \sqrt{2}x\right) \cdot y+2\cdot y\cdot 2\sqrt{2}z-2\cdot \left( 2\sqrt{2}z\right) \cdot \left( -\sqrt{2}x\right) \) $$\color{orange}\left[\because\quad2x^{2}=\left( -\sqrt{2}x\right) ^{2},\quad 8z^{2}=\left( 2\sqrt{2}z\right) ^{2}\right]$$ \(\color{blue}\text{Using Identity: }a^{2}+b^{2}+c^{2}+2ab+2bc+2za=\left( a+b+c\right) ^{2}\\\\\) \(\qquad =\left( -\sqrt{2}x\right) ^{2}+y^{2}+\left( 2\sqrt{2}z\right) ^{2}-2\cdot \sqrt{2}x\cdot y+2\cdot y\cdot 2\sqrt{2}z-2\cdot \left( 2\sqrt{2}z\right) \cdot \left( -J_{2}x\right) \\ \qquad =\left( -\sqrt{2}x+y+2\sqrt{2}z\right) ^{2}\\ \qquad =\left( -\sqrt{2}x+y+2\sqrt{2}Z\right) \left( -\sqrt{2}x+y+2\sqrt{2}z\right) \)

6. Write the following cubes in expanded form:

  1. \(\left( 2x+1\right) ^{3}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a+b\right) ^{3}&=\color{blue}a^{3}+b^{3}+3\left( a+b\right) ab\\ \left( 2x+1\right) ^{3} &=\left( 2x\right) ^{3}+1^{3}+3\left( 2x+1\right) \left( 2x\right) \left( 1\right) \\ &=8x^{3}+1+6x(2x+1)\\ &=8x^{3}+1+12x^2 + 6x\\ &=8x^{3}+12x^{2}+6x+1\end{aligned}$$

  2. \(\left( 2a-3b\right) ^{3}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a-b\right) ^{3}&=\color{blue}a^{3}-b^{3}-3ab\left( a-b\right) \\\\ \left( 2a-3b\right) ^{3} &=\left( 2a\right) ^{3}-\left( 3b\right) ^{3}-3\left( 2a\right) \left( 3b\right) \left( 2a-3b\right) \\ &=8a^{3}-27b^{3}-18ab\left( 2a-3b\right) \\ &=8a^{3}-27b^{3}-36a^{2}b+54ab^{2}\end{aligned}$$

  3. \(\left( \dfrac{3}{2}x+1\right) ^{3}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a+b\right) ^{3}&=\color{blue}a^{3}+b^{3}+3ab\left( a+b\right) \\\\ \left( \dfrac{3}{2}x+1\right) ^{3}&= \left( \dfrac{3}{2}x+1\right) ^{3} \left( \dfrac{3}{2}x\right) ^{3}+1^{3}+3\cdot \dfrac{3}{2}x\cdot 1\left( \dfrac{3}{2}x+1\right) \\\\ &=\dfrac{27}{8}x^{3}+1+\dfrac{9}{2}x\left( \dfrac{3}{2}x+1\right) \\\\ &=\dfrac{27}{8}x^{3}+1+\dfrac{9}{2}x\cdot \dfrac{3}{2}x+\dfrac{9}{2}x\cdot 1\\\\ &=\dfrac{27}{8}x^{3}+1+\dfrac{27x^{2}}{4}+\dfrac{9}{2}x\\\\ &=\dfrac{27}{8}x^{3}+\dfrac{27}{4}x^{2}+\dfrac{9}{2}x+1\end{aligned}$$

  4. \(\left( x-\dfrac{2}{3}y\right) ^{3}\) $$\begin{aligned} \color{blue}\text{Using Identity: }\left( a-b\right) ^{3}&=\color{blue}a^{3}-b^{3}-3ab\left( a-b\right) \\\\ \left( x-\dfrac{2}{3}y\right) ^{3} &=x^{3}-\left( \dfrac{2}{3}y\right) ^{3}-3\cdot x\cdot \dfrac{2}{3}y\left( x-\dfrac{2}{3}y\right) \\\\ &=x^{3}-\dfrac{8}{27}y^{3}-2xy\left( x-\dfrac{2}{3}y\right) \\\\ &=x^{3}-\dfrac{8}{27}y^{3}-2x^{2}y+2\cdot \dfrac{2}{3}xy^{2}\\\\ &=x^{3}-\dfrac{8}{27}y^{3}-2x^{2}y+\dfrac{4}{3}xy^{2}\end{aligned}$$

7. Evaluate the following using suitable identities:

  1. \(\left( 99\right) ^{3}\) $$\begin{aligned}\left( 99\right) ^{3} &=\left( 100-1\right) ^{3}\\\\ \color{blue}\text{Using Identity: }\left( a-b\right) ^{3}&=\color{blue}a^{3}-b^{3}-3a^2b+3ab^2 \\\\ \left( 100-1\right) ^{3} &=100^{3}-1^{3}-3\cdot 100^2\cdot1+3\cdot100\cdot1^2 \\ &=1000000-1-30000+300 \\ &=1000300-30001\\ &=970299\end{aligned}$$

  2. \(\left( 102\right) ^{3}\) $$\begin{aligned}\left( 102\right) ^{3}&=\left( 100+2\right) ^{3}\\\\ \color{blue}\text{Using Identity: }\left( a+b\right) ^{3}&=\color{blue}a^{3}+b^{3}+3ab\left( a+b\right) \\\\ \left( 100+2\right) ^{3} &=\left( 100\right) ^{3}+\left( 2\right) ^{3}+3\cdot 100\cdot 2\left( 100+2\right) \\ &=1000000+8+600\left( 102\right) \\ &=1000000+8+61200\\ &=1000000+61208\\ &=1061208\end{aligned}$$

  3. \(\left( 998\right) ^{3}\) $$\begin{aligned}\left( 998\right) ^{3}&=\left( 1000-2\right) ^{3}\\ \color{blue}\text{Using Identity: }\left( a^{3}-b\right) ^{3}&=\color{blue}9^{3}-b^{3}-3a^2b+3ab^2 \\ \left( 1000-2\right) ^{3} &=\left( 1000\right) ^{3}-2^{3}-3\cdot1000^2\cdot 2+3\cdot 1000\cdot 2^2 \\ &=1000000000-8-3\cdot 2\cdot 1000000 + 3\cdot4\cdot1000\\ &=1000000000-8-6000000+12000\\ &=1000012000-6000008\\ &=994011992\end{aligned}$$

8. Factorise each of the following:

  1. \(8a^{3}+b^{3}+72a^{2}b+6ab^{2}\) $$\begin{aligned} \color{blue}\text{Using Identity: }a^{3}+b^{3}+3a^{2}b+3ab^{2}&=\color{blue}\left( a+b\right) ^{3}\\\\ 8a^{3}+b^{3}+72a^{2}b+6ab^{2}&=\left( 2a\right) ^{3}+b^{3}+3\cdot \left( 2\right) ^{2}\cdot b+3\left( 2a\right) b^{2}\\ &=\left( 2a+b\right) ^{3}\\ &=\left( 2a+b\right) \left( 2a+b\right) \left( 2a+b\right) \end{aligned}$$

  2. \(8a^{3}-b^{3}-12a^{2}b+6ab^{2}\) $$\begin{aligned} \color{blue}\text{Using Identity: }a^{3}-b^{3}-3a^{2}b+3ab^{2}&=\color{blue}\left( a-b\right) ^{3}\\\\ 8a^{3}-b^{3}-12a^{2}b+6ab^{2} &=\left( 2a\right) ^{3}-b^{3}-3\cdot \left( 2a\right) ^{2}b+3\cdot \left( 2a\right) b^{2}\\ &=\left( 2a-b\right) ^{3}\\ &=\left( 2a-b\right) \left( 2a-b\right) \left( 2a-b\right) \end{aligned}$$

  3. \(27-125a^{3}-135a+225a^{2}\) $$\begin{aligned} \color{blue}\text{Using Identity: }a^{3}-b^{3}-3a^{2}b+3ab^{2}&=\color{blue}\left( a-b\right) ^{3}\\\\ 27-125a^{3}-135a+225a^{2} &=3^{3}-\left( 5a\right) ^{3}-3\cdot 3^{2}\cdot 5a+3\cdot 3\cdot \left( 5a\right) ^{2}\\ &=\left( 3-5a\right) ^{3}\\ &=\left( 3-5a\right) \left( 3-5a\right) \left( 3-5a\right) \end{aligned}$$

  4. \(64a^{3}-27b^{3}-144a^{2}b+108ab^{2}\) $$\begin{aligned}\\ \color{blue}\text{Using Identity: }a^{3}-b^{3}-3a^{2}b+3ab^{2}&=\color{blue}\left( a-b\right) ^{3}\\ 64a^{3}-27b^{3}-144a^{2}b+108ab^{2} &=\left( 4a\right) ^{3}-\left( 3b\right) ^{3}-3\cdot \left( 4a\right) ^{2}\cdot 3b+3\cdot \left( 4a\right) \cdot \left( 3b\right) ^{2}\\ &=\left( 4a-3b\right) ^{3}\\ &=\left( 4a-3b\right) \left( 4a-3b\right) \left( 4a-3b\right) \end{aligned}$$

  5. \(27p^{3}-\dfrac{1}{216}-\dfrac{9}{2}p^{2}+\dfrac{1}{4}p\\\) $$\begin{aligned} \color{blue}\text{Using Identity: }a^{3}-b^{3}-3a^{2}b+3ab^{2}&=\color{blue}\left( a-b\right) ^{3}\\\\ 27p^{3}-\dfrac{1}{216}-\dfrac{9}{2}p^{2}+\dfrac{1}{4}p &=\left( 3p\right) ^{3}-\left( \dfrac{1}{6}\right) ^{3}-3-\left( 3p\right) ^{2}\cdot \dfrac{1}{6}+3\cdot 3p\cdot \left( \dfrac{1}{6}\right) ^{2}\\\\ &=\left( 3p-\frac{1}{6}\right) ^{3}\\\\ &=\left( 3p-\frac{1}{6}\right) \left( 3p-\frac{1}{6}\right) \left( 3p-\frac{1}{6}\right) \end{aligned}$$

9. Verify :

  1. \(x^{3}+y^{3}=\left( x+y\right) \left( x^{2}-xy+y^{2}\right)\\\\ RHS\) $$\begin{aligned}\left( x+y\right) \left( x^{2}-xy+y^{2}\right) &=x^{3}-x^{2}y+xy^{2}+yx^{2}-xy^{2}+y^{3}\\ &=x^{3}+y^{3}-x^{2}y+x^{2}y+xy^{2}-xy^{2}\\ &=x^{3}+y^{3}+(x^{2}y-x^{2}y)+(xy^{2}-xy^{2})\\ &=x^{3}+y^{3}+(0)+(0)\\ &=x^{3}+y^{3}\end{aligned}$$ \(LHS=RHS\quad hence,~verified.\)

  2. \(x^{3}-y^{3}=\left( x-y\right) \left( x^{2}+xy+y^{2}\right)\\\\RHS\) $$\begin{aligned} \left( x-y\right) \left( x^{2}+xy+y^{2}\right) &=x^{3}+x^{2}y+xy^{2}-yx^{2}-xy^{2}-y^{3}\\ &=x^{3}-y^{3}+x^{2}y-yx^{2}+xy^{2}-xy^{2}\\ &=x^{3}-y^{3}+(x^{2}y-x^{2}y)+(xy^{2}-xy^{2})\\ &=x^{3}-y^{3}+(0)+(0)\\ &=x^{3}-y^{3}\\ RHS=LHS\quad hence,~verified\end{aligned}$$

10. Factorise each of the following:

  1. \(27y^{3}+125z^{3}\) $$\begin{aligned}27y^{3}+125z^{3} &=\left( 3y\right) ^{3}+\left( 5z\right) ^{3}\\ \color{blue}\text{Using Identity: }a^{3}+b^{3}&=\color{blue}\left( a+b\right) \left( a^{2}-ab+b^{2}\right) \\\\ \left( 3y\right) ^{3}+\left( 5z\right) ^{3} &=\left( 3y+5z\right) \left\{ \left( 3y\right) ^{2}-3y\cdot 5z+\left( 5z\right) ^{2}\right\} \\ &=\left( 3y+5z\right) \left( 9y^{2}-15yz+25z^{2}\right) \end{aligned}$$

  2. \(64m^{3}-343n^{3}\) $$\begin{aligned}64m^{3}-343n^{3}\\ \color{blue}\text{Using Identity: }a^{3}-b^{3}&=\color{blue}\left( a-b\right) \left( a^{2}+ab+b^{2}\right) \\\\ \left( 4m\right) ^{3}-\left( 7n\right) ^{3} &=\left( 4m-7n\right) \left\{ \left( 4m\right) ^{2}+4m\cdot 7n+\left( 7n\right) ^{2}\right\} \\ &=\left( 4m-7n\right) \left\{ 16m^{2}+28mn+49n^{2}\right\} \\ &=\left( 4m-7n\right) \left( 16m^{2}+28mn+49n^{2}\right) \end{aligned}$$

11. Factorise : \(27x^3 + y^3 + z^3 – 9xyz\)

$$\begin{aligned} \color{blue}\text{Using Identity: }x^{3}+y^{3}+z^{3}-3xyz &=\color{blue}\dfrac{1}{2}\left( x+y+z\right) \left\{ \left( x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-x\right) ^{2}\right\} \\\\ 27x^{3}+y^{3}+z^{3}-9xyz &=\left( 3x\right) ^{3}+y^{3}+z^{3}-3\cdot \left( 3x\right) \cdot y\cdot z\\ &=\dfrac{1}{2}\left( 3x+y+z\right) \left\{ \left( 3x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-3x\right) ^{2}\right\} \end{aligned}$$

12. Verify that \(x^{3}+y^{3}+z^{3}-3xyz=\dfrac{1}{2}\left( x+y+z\right) \left[ \left( x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-x\right) ^{2}\right] \)

\(RHS:\\\\ \dfrac{1}{2}\left( x+y+z\right) \left[ \left( x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-x\right) ^{2}\right] \\\\ \quad =\dfrac{1}{2}\left( x+y+z\right) \left[ x^{2}+y^{2}-2xy+y^{2}+z^{2}-2yz+z^{2}+x^{2}-2zx\right] \\\\ \quad =\dfrac{1}{2}\left( x+y+z\right) \left[ x^{2}+y^{2}+y^{2}+z^{2}+z^{2}+x^{2}-2xy-2yz-2zx\right] \\\\ \quad =\dfrac{1}{2}\left( x+y+z\right) \left[ 2x^{2}+2y^{2}+2z^{2}-2xy-2yz-2zx\right] \\\\ \quad =\dfrac{1}{2}\left( x+y+z\right) .2\left[ x^{2}+y^{2}+z^{2}-xy-yz-zx\right] \\\\ \quad =\dfrac{1}{2}\cdot 2\left( x+y+z\right) \left( x^{2}+y^{2}+z^{2}-xy-yz-zx\right) \\\\ \left( x+y+z\right) \left( x^{2}+y^{2}+z^{2}-xy-yz-zx\right) \\\\ \quad =x^{3}+xy^{2}+xz^{2}-x^{2}y-xyz-zx^{2}\\ \qquad\quad+yx^{2}+y^{3}+yz^{2}-xy^{2}-y^{2}z-yzx\\ \qquad\quad+zx^{2}+zy^{2}+z^{3}-zxy-yz^{2}-z^{2}x\\ \quad=x^{3}+y^{3}+z^{3}-xyz-yzx-zxy\\ \quad\quad\quad+(xy^{2}-xy^{2})+(xz^{2}-z^{2}x)+(yx^{2}-x^{2}y)\\ \quad\quad\quad+(zx^{2}-zx^{2})+(yz^{2}-yz^{2})+(zy^{2}-y^{2}z)\\\\ \quad=x^{3}+y^{3}+z^{3}-3xyz\\ \quad\quad\quad+(0)+(0)+(0)\\ \quad\quad\quad+(0)+(0)+(0)\\\\ \quad =x^{3}+y^{3}+z^{3}-3xyz\\ =LHS\\\ \)

13. If \(x + y + z = 0\), show that \(x^3 + y^3 + z^3 = 3xyz\).

$$\begin{aligned}x^{3}+y^{3}+z^{3}-3xyz&=\dfrac{1}{2}\left( x+y+z\right) \left[ \left( x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-x\right) ^{2}\right] \\\\ but~x+y+z&=0\quad \text{as given}\\\\ x^{3}+y^{3}+z^{3}-3xyz&=\dfrac{1}{2}\left( 0\right) \left[ \left( x-y\right) ^{2}+\left( y-z\right) ^{2}+\left( z-x\right) ^{2}\right] \\\\ x^{3}+y^{3}+z^{3}-3xyz&=0\\\\ \Rightarrow x^{3}+y^{3}+z^{3}&=3xyz\end{aligned}$$

14. Without actually calculating the cubes, find the value of each of the following:

  1. \(\left( -12\right) ^{3}+\left( 7\right) ^{3}+\left( 5\right) ^{3}\) $$\begin{aligned}\left( -12\right) ^{3}+\left( 7\right) ^{3}+\left( 5\right) ^{3}\\ \because\quad-12+7+5&=0\\ \therefore\quad x^{3}+y^{3}+z^{3}&=3xyz\quad\color{blue}\leftarrow\text{Conditional Formula when } x+y+z=0\\ \left( -12\right) ^{3}+\left( 7\right) ^{3}+\left( 5\right) ^{3}&=3\cdot \left( -12\right) \cdot 7\cdot 5\\ &=-60\times 2 \\ &=-1260\end{aligned}$$

  2. (\\left( 28\right) ^{3}+\left( -15\right) ^{3}+\left( -13\right) ^{3}\) $$ \begin{aligned}28-15-13&=0\\ \quad\color{blue}\text{if } (x+y +z&= \color{blue}0)\\\quad\text{then }\Rightarrow x^{3}+y^{3}+z^{3}&=3xyz\\ \therefore \left( 28\right) ^{3}+\left( -15\right) ^{3}+\left( -13\right) ^{3} &=3.28\cdot \left( -15\right) \cdot \left( -13\right)\\ &=3\cdot 28\cdot 15\cdot 13\\ &=16380\end{aligned} $$


15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

  1. Area=\(A=25a^{2}-35a+12\) $$A=25a^{2}-35a+12$$ \(\text{if we can find two numbers } p~and~q \text{ such that } pq=25\times 12~and~ p+q=35,\text{ then by the mid-term split method we can factorise the expression}\) $$\begin{aligned}pq&=12\times 25\\&=3\times 4\times 5\times 5\\&=3\times 5\times 4\times 5\\&=15\times 20\\p&=15,\\q&=20\\ p+q&=15+20\\&=35\\ A&=25a^{2}-35a+12\\&=25a^{2}-15a-20a+12\\&=5a\left( 5a-3\right) -4\left( 5a-3\right) \\&=\left( 5a-3\right) \left( 5a-4\right) =0 \text{ (to find solution we must equate to zero)}\\\Rightarrow5a-3&=0\\a&=\frac{3}{5}\\\Rightarrow 5a-4&=0\\5a&=4 \\a&=\frac{4}{5}\\\text{(Length, Breadth)}&=(3/5, 4/5)\end{aligned}$$

  2. Area=\(35y^{2}+13y-12\) $$A=35y^{2}+13y-12$$ \(\text{if we can find two numbers } p~and~q \text{ such that } pq=35\times 12~and~ p+q=13,\text{ then by mid-term split method we can factorise the expression}\) $$\begin{aligned}pq &=35\times 12\\ &=5\times 7\times 3\times 4\\ &=15\times 28\\ 35y^{2}+28y-15y-12&=0\\7y\left( 5y+4\right) -3\left( 5y+4\right) &=0\\\left( 5y+4\right) \left( 7y-3\right) &=0\\7y-3&=0\\y&=3/7\\5y+4&=0\\y&=-4/5\end{aligned}$$ \(\text{Length cannot be less than zero. }\\ \therefore3/7\text{ is the Answer}\)

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

  1. Volume \(V=3x^{2}-12x\) $$\begin{aligned}V&=3x^{2}-12x\\ &=3x\left( x-4\right) \\ &=3x\left( x-4\right) \\ &3x\left( x-4\right) =0\\ &3x=0\\ &x-4=0\\ &x=4\end{aligned}$$

  2. Volume \(12ky^{2}+8ky-2k\) $$\begin{aligned}12ky^{2}+8ky-2k&=0\\ 12yk^{2}+8yk-20k&=0\\ 4k\left( 3y^{2}+2y-5\right) &=0\\ 3y^{2}+2y-5&=0\\ 3y^{2}-3y+5y-5&=0\\ 3y\left( y-1\right) +5\left( y-1\right) &=0\\ \left( y-1\right) \left( 3y+5\right) &=0\\ y-1&=0\\ y&=1\end{aligned}$$

Recent posts


    Important Links

    Leave Your Message & Comments