Exercise-6.2
Maths - Exercise
Q1. In Fig. 6.23, if AB || CD, CD || EF and y : z = 3 : 7, find x.
Solution:
Q2. In Fig. 6.24, if AB || CD, EF ⊥ CD and ∠ GED = 126°, find ∠ AGE, ∠ GEF and ∠ FGE.
Solution:
\(\angle GEF,\; \angle FGE \text{ and}\;\angle AGE\\\)
$$\begin{aligned} \angle GED&=\angle GEF+\angle FED\\ 126^\circ&=\angle GEF+90^{\circ}\\ \angle GEF&=126^{\circ}-90^{\circ}=36^{\circ}\\ \angle GED+\angle EFG+\angle FGE&=180^{\circ}\end{aligned}$$ (Sum of Internal Angles of Δ GEF) $$\begin{aligned}36^{\circ}+90^{\circ}+\angle FGE&=180^{\circ }\\ \angle FGE&=180^{\circ}-126^{\circ}\\ &=54^{\circ}\\ \angle AGE+\angle FGE&=180\end{aligned}$$ (linear pair) $$\begin{aligned}\angle AGE+54^{\circ }&=180^{\circ}\\ \angle AGE&=180^{\circ}-54^{\circ}\\ &=126^{\circ}\end{aligned}$$Q3. In Fig. 6.25, if PQ || ST, ∠ PQR = 110° and ∠ RST = 130°, find ∠ QRS.
Solution:
Q4. In Fig. 6.26, if AB || CD, ∠ APQ = 50° and ∠ PRD = 127°, find x and y.
Solution:
Q5. In Fig. 6.27, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.
Solution:
To prove
AB||CD
Constructions
line BE is drawn from point B to E such that BE ⟂ RS line CF is drawn from point a to F such that CF ⟂ PQ
Proof $$\angle ABE=\angle EBC\tag{1}$$ (Angle of incidence = Angle of reflection)
Similarly
$$\begin{align}\angle BCF&=\angle FCD\tag{2}\\ BE\parallel CF\\ \therefore \angle EBC&=\angle BCF\tag{3}\end{align}$$ (Alternate angles to transversal BC) Adding equations (1) and (3) $$\begin{align}\angle ABE+\angle EBC&=\angle EBC+\angle FCD\\ \angle ABC&=\angle EBC+\angle FCD\tag{4}\end{align}$$ Adding equations (2) and (3) $$\begin{align}\angle BCF+\angle EBC&=\angle FCD+\angle BCF\\ &= \angle BCD\tag{5}\end{align}$$ From equations (4) and (5) $$\angle ABC=\angle BCD$$ Alternate angles to the transversal BC are equal, therefore $$ AB\parallel CD$$