INTRODUCTION TO TRIGONOMETRY-Exercise 8.3

Chapter 8, Introduction to Trigonometry, marks a fundamental transition in Class X Mathematics, enabling learners to interpret and relate the sides and angles of right-angled triangles through precise trigonometric ratios. The textbook exercises curated by NCERT are structured to guide students progressively—from identifying basic ratios such as sine, cosine, and tangent to applying identities, evaluating standard angles, deriving relationships, and solving angle-dependent problems with accuracy. These detailed exercise solutions have been developed to strengthen conceptual clarity, support step-by-step logical reasoning, and promote confidence in solving exam-level problems. Each solution emphasizes correct interpretation of diagrams, meaningful use of identities, structured algebraic manipulation, and the application of core principles such as the Pythagorean identity and complementary angle relationships. Whether used for regular study, revision, self-assessment, or board examination preparation, this solution set serves as a comprehensive learning companion. It reinforces mathematical maturity, nurtures problem-solving habits, and lays a strong foundation for advanced trigonometry encountered in higher classes, competitive examinations, and real-world mathematical applications.

Continue Reading →
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.2

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
Maths

TRIGONOMETRIC FUNCTIONS-Exercise 3.1

Exercise • Jan 2026

Trigonometric Functions form a crucial foundation of higher mathematics and play a vital role in physics, engineering, astronomy, and real-life proble...

Continue Reading →
Exercise
December 11, 2025  |  By Academia Aeternum

INTRODUCTION TO TRIGONOMETRY-Exercise 8.3

Maths - Exercise

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Solution:

sin A in terms of cot A
$$\begin{aligned}\cot A&=\dfrac{\cos A}{\sin A}\\\\ \sin A&=\dfrac{\cos A}{\cot A}\\\\ \color{magenta}\cos A&\color{magenta}=\sqrt{1-\sin^2 A}\\\\ &=\dfrac{\sqrt{1-\sin ^{2}A}}{\cot A}\\ \\ \sin ^{2}A&=\dfrac{1-\sin ^{2}A}{\cot ^{2}A}\\\\ \cot ^{2}A \sin ^{2}A&=1-\sin ^{2}A\\\\ \cot ^{2}A \sin ^{2}A+\sin ^{2}A&=1\\\\ \sin ^{2}A \left( \cot ^{2}A+1\right) &=1\\\\ \sin ^{2}A&=\dfrac{1}{1+\cot ^{2}A}\\\\ \sin A&=\sqrt{\dfrac{1}{1+\cot ^{2}A}}\\\\ &=\dfrac{1}{\sqrt{1+\cot ^{2}A}}\end{aligned}$$
sec A in terms of cot A
$$\begin{aligned}\cot A&=\dfrac{\cos A}{\sin A}\\\\ \color{magenta}\sin A&\color{magenta}=\sqrt{1-\cos^2 A}\\\\ \cot A&=\dfrac{\cos A}{\sqrt{1-\cos 2}}\\\\ \dfrac{\sqrt{1-\cos ^{2}A}}{\cos A}&=\dfrac{1}{\cot A}\\\\ \left( \dfrac{\sqrt{1-\cos ^{2}A}}{\cos A}\right) ^{2}&=\left( \dfrac{1}{\cot A}\right) ^{2}\\\\ \dfrac{1-\cos ^{2}A}{\cos ^{2}A}&=\dfrac{1}{\cot ^{2}A}\\\\ \dfrac{1}{\cos ^{2}A}-\dfrac{\cos ^{2}A}{\cos ^{2}A}&=\dfrac{1}{\cot ^{2}A}\\\\ \dfrac{1}{\cos ^{2}A}&=\dfrac{1}{\cot ^{2}A}-1\\\\ \sec ^{2}A&=\dfrac{1}{\cot ^{2}A}-1\\\\ \sec A&=\sqrt{\dfrac{1-\cot ^{2}A}{\cot ^{2}A}}\\\\ \sec A&=\dfrac{\sqrt{1-\cot ^{2}A}}{\cot A}\end{aligned}$$
tan A in terms of cot A
$$\tan A=\dfrac{1}{\cot A}$$

2. Write all the other trigonometric ratios of  A in terms of sec A.

Solution:

Trigonometrical Ratio in terms of sec A
sin A and cosec A in terms of sec A
$$\begin{aligned}\sin A&=\sqrt{1-\cos ^{2}A}\\\\ \sin ^{2}A&=1-\cos ^{2}A\\\\ \dfrac{\sin ^{2}A}{\cos ^{2}A}&=\dfrac{1-\cos ^{2}A}{\cos ^{2}A}\\\\ \dfrac{\sin ^{2}A}{\cos ^{2}A}&=\dfrac{1}{\cos ^{2}A}-1\\\\ \sin ^{2}A \sec ^{2}A&=\sec ^{2}A-1\\\\ \sin ^{2}A&=\dfrac{\sec ^{2}A-1}{\sec ^{2}A}\\\\ \sin A&=\dfrac{\sqrt{\sec ^{2}A-1}}{\sec A}\\\\ \text{cosec } A&=\dfrac{1}{\sin A}\\\\ \text{cosec } A&=\dfrac{\sec A}{\sqrt{\sec ^{2}A-1}}\end{aligned}$$
cos A in terms of secA
$$\begin{aligned}\cos A&=\dfrac{1}{\sec A}\\ \sec A&=\dfrac{1}{\cos A}\end{aligned}$$
tan A and cot A in terms of sec A
$$\begin{aligned}\tan A&=\dfrac{\sin A}{\cos A}\\\\ \sin A&=\dfrac{\sqrt{\sec ^{2}A-1}}{\sec A}\\\\ \cos A&=\dfrac{1}{\sec A}\\\\ \tan A&=\dfrac{\sqrt{\sec ^{2}A-1}}{\sec A \cos A}\\\\ \tan A&=\dfrac{\sqrt{\sec ^{2}A-1}}{\sec A \dfrac{1}{\sec A}}\\\\ \tan A&=\sqrt{\sec ^{2}A-1}\\\\ \cot A&=\dfrac{1}{\tan A}\\\\ \cot A&=\dfrac{1}{\sqrt{\sec ^{2}A-1}}\end{aligned}$$

3. Choose the correct option. Justify your choice.

Solution:

Choose the correct options

i. $$\begin{aligned} &9\sec ^{2}A-9 \tan ^{2}A\\ &=9 \left( \sec ^{2}A-\tan ^{2}A\right) \\ &=9 \left[ \sec ^{2}A-\left( \sec ^{2}A-1\right) \right] \\ &=9 \left[ \sec ^{2}A-\sec ^{2}A+1\right] \\ &=9 \left[ 1\right] \\ &=9\end{aligned}$$
(B) 9 is correct option
ii. $$\scriptsize\begin{aligned} &\left( 1+\tan \theta +\sec\theta \right) \left( 1+\cot \theta -\text{cosec }\theta \right) \\\\ &=\left( 1+\dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos \theta }\right) \left( 1+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta }\right) \\\\ &=\left( \dfrac{\cos \theta +\sin \theta +1}{\cos \theta }\right) \left( \dfrac{\sin \theta +\cos \theta -1}{\sin \theta }\right) \\\\ &=\dfrac{1}{\sin \theta \cos \theta } \left[ \left( \cos \theta +\sin \theta +1\right) \left( \sin \theta + \cos \theta -1\right) \right] \end{aligned}$$

Let \(\sin \theta + \cos \theta =a, \text{ and } 1=b\)
using Formula: \((a+b)(a-b)=a^2-b^2\)

$$\scriptsize\begin{aligned}&=\dfrac{1}{\sin \theta \cos \theta } \left[ \left( \cos \theta +\sin \theta \right) ^{2}-1^{2}\right] \\\\ &=\dfrac{1}{\sin \theta \cos \theta } \left[ \cos ^{2}\theta +\sin ^{2}\theta +2 \sin \theta \cos \theta -1\right] \\ &=\dfrac{1}{\sin \theta \cos \theta } \left[ 1+2 \sin \theta \cos \theta -1\right] \\\\ &=\dfrac{2 \sin \theta \cos \theta }{\sin \cos \theta }\\\\ &=2\end{aligned}$$
(C) 2 is correct option
iii. $$\begin{aligned} &\left( \sec A+\tan A\right) \left( 1-\sin A\right) \\\\ &=\left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\right) \left( 1-\sin A\right) \\\\ &=\dfrac{1}{\cos A} \left[ \left( 1+\sin A\right) \left( 1-\sin A\right) \right] \\\\ &=\dfrac{1}{\cos A} \left[ 1-\sin ^{2}A\right] \\\\ &=\dfrac{1}{\cos A} \cos ^{2}A\\\\ &=\cos A\end{aligned}$$
(D) is correct option
iv. $$\begin{aligned}&\dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}\\\\ &=\dfrac{\sec ^{2}A}{\text{cosec}^{2}\ A}\\\\ &=\dfrac{1}{\cos ^{2}A \dfrac{1}{\sin ^{2}A}}\\\\ &=\dfrac{\sin ^{2}A}{\cos ^{2}A}\\\\ &=\tan ^{2}A\end{aligned}$$
(D) is correct option

4. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Solution:

i. \[\left( \text{cosec }\theta -\cot \theta \right) ^{2}=\dfrac{1-\cos \theta }{1+\cos \theta }\]

LHS

$$\begin{aligned}&\left( \text{cosec } \theta -\cot \theta \right) ^{2}\\\\ &\left[ \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta }\right] ^{2}\\\\ &=\left[ \dfrac{1-\cos \theta }{\sin \theta }\right] ^{2}\\\\ &=\dfrac{\left( 1-\cos \theta \right) ^{2}}{\sin ^{2}\theta }\\\\ &=\dfrac{\left( 1-\cos \theta \right) ^{2}}{\left( 1-\cos ^{2}\theta \right) }\\\\ \color{cyan}a^{2}-b^{2}&\color{cyan}=\left( a+b\right) \left( a-b\right) \\\\ &=\dfrac{\left( 1-\cos \theta \right) ^{2}}{\left( 1+\cos \theta \right) \left( 1-\cos \theta \right) }\\\\ &=\dfrac{1-\cos \theta }{1+\cos \theta }=RHS\\\\ LHS&=RHS\end{aligned}$$
Thus Proved.

ii. \[\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A\]

LHS

$$\begin{aligned} &=\dfrac{\cos ^{2}A+\left( 1+\sin A\right) ^{2}}{\left( 1+\sin A\right) \cos A}\\\\ &=\dfrac{\cos ^{2}A+1+\sin ^{2}A+2 \sin A}{\left( 1+\sin A\right) \left( \cos A\right) }\\\\ &=\dfrac{\cos ^{2}A+\sin ^{2}A+1+2 \sin A}{\left( 1+\sin A\right) \left( \cos A\right) }\\\\ &\color{cyan}\cos ^{2}A+\sin ^{2}A=1\\\\ &=\dfrac{1+1+2 \sin A}{\left( 1+\sin A\right) \cos A}\\\\ &=\dfrac{2+2 \sin A}{\cos A \left( 1+\sin A\right) }\\\\ &=\dfrac{2 \left( 1+\sin A\right) }{\cos A \left( 1+\sin A\right) }\\\\ &=\dfrac{2}{\cos A}\\\\ &=2\sec A=RHS\\\\ LHS=RHS\end{aligned}$$
Thus Proved

iii. \[\dfrac{\tan \theta }{1-\cot \theta }+\dfrac{\cot \theta }{1-\tan \theta }=1+\sec \theta \text{ cosec } \theta \]
LHS
$$\scriptsize\begin{aligned} &=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{1-\dfrac{\cos \theta }{\sin \theta }}+\dfrac{\dfrac{\cos \theta }{\sin \theta }}{1-\dfrac{\sin \theta }{\cos \theta }}\\\\ &=\dfrac{\sin \theta }{\cos \theta \left[ \dfrac{\sin \theta -\cos \theta }{\sin \theta }\right] }+\dfrac{\cos \theta }{\sin \theta \left[ \dfrac{\cos \theta -\sin \theta }{\cos \theta }\right] }\\\\ &=\dfrac{\sin ^{2}\theta }{\cos \theta \left( \sin \theta -\cos \theta \right) }+\dfrac{\cos ^{2}\theta }{\sin \theta \left( \cos \theta -\sin \theta \right) }\\\\ &=\dfrac{\sin ^{3}\theta \left( \cos \theta -\sin \theta \right) +\cos ^{3}\theta \left( \sin \theta -\cos \theta \right) }{\cos \theta \left( \sin \theta -\cos \theta \right) \sin \theta \left( \cos \theta -\sin \theta \right) }\\\\ &=\dfrac{\sin ^{3}\theta \left( \cos \theta -\sin \theta \right) -\cos ^{3}\theta \left( \cos \theta -\sin \theta \right) }{\sin \theta \cos \theta \left( \sin \theta -\cos \theta \right) \left( \cos \theta -\sin \theta \right) }\\\\ &=\dfrac{\left( \cos \theta -\sin \theta \right) \left( \sin ^{3}\theta -\cos ^{3}\theta \right) }{\left( \cos \theta -\sin \theta \right) \left( \sin \theta \cos \theta \right) \left( \sin \theta -\cos \theta \right)}\\\\ &=\dfrac{\sin ^{3}\theta -\cos ^{3}\theta }{\sin \theta \cos \theta \left( \sin \theta -\cos \theta \right) }\end{aligned}$$

Using Formula: \(\color{cyan}\boxed{a^3-b^3=(a-b)(a^2+ab+b^2)}\)

$$\scriptsize\begin{aligned}&=\dfrac{\left( \sin \theta -\cos \theta \right) \left( \sin ^{2}\theta +\cos ^{2}\theta +\sin \theta \cos \theta \right) }{\left( \sin \theta -\cos \theta \right) \left( \sin \theta \cos \theta \right) }\\\\ &=\dfrac{1+\sin \theta \cos \theta }{\sin \theta \cos \theta }\\\\ &=\dfrac{1 }{\sin \theta \cos \theta }+\dfrac{\sin \theta \cos \theta}{\sin \theta \cos \theta}\\\\ &=\dfrac{1}{\sin \theta \cos \theta }+1\\\\ &1+\sec \theta \text{ cosec }\theta =RHS\\\\ LHS&=RHS\end{aligned}$$
Thus proved.

iv \[\dfrac{1+\sec A}{\sec A}=\dfrac{\sin ^{2}A}{1-\cos A}\\\]
LHS
$$\begin{align} &\dfrac{1+\sec A}{\sec A}\\\\ &=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}\\\\ &=\dfrac{\cos A+1}{\cos A \dfrac{1}{\cos A}}\\\\ &=\cos A+1\tag{A}\end{align}$$
RHS
$$\begin{align}&\dfrac{\sin ^{2}A}{1-\cos A}\\\\ &=\dfrac{1-\cos ^{2}A}{1-\cos A}\\\\ &=\dfrac{\left( 1-\cos A\right) \left( 1+\cos A\right) }{1-\cos A}\\\\ &=\cos A+1\tag{B}\\\\ A&=B\end{align}$$
Thus proved

v. $$\begin{aligned} \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}\end{aligned}$$

Divide numerator and denominator by sin A

$$\begin{aligned}&\dfrac{\dfrac{\cos A}{\sin A}-\dfrac{\sin A}{\sin A}+\dfrac{1}{\sin A}}{\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\sin A}-\dfrac{1}{\sin A}}\\\\ &=\dfrac{\cot A-1+\text{ cosec }A}{\cot A+1-\text{ cosec }A}\\\\ &=\dfrac{\cot A-\left( 1-\text{ cosec }A\right) }{\cot A+\left( 1-\text{ cosec }A\right) }\end{aligned}$$

Multiply and divide by cot A-(1-cosec A)

$$\scriptsize\begin{aligned}&\dfrac{\cot A-\left( 1-\text{ cosec }A\right) }{\cot A+\left( 1-\text{ cosec }A\right) }\times \dfrac{\cot A-\left( 1-\text{ cosec }A\right) }{\cot A-\left( 1-\text{ cosec }A\right) }\\\\ &=\dfrac{\left[ \cot A-\left( 1-\text{ cosec }A\right) \right] ^{2}}{\cot ^{2}A-\left( 1-\text{ cosec } A\right) ^{2}}\\\\ &=\dfrac{\cot ^{2}A-2 \cot A \left( 1-\cos aA\right) +\left( 1-\text{cosec }A\right) ^{2}}{\cot ^{2}A-\left[ 1+\text{ cosec } ^{2}A-2 \text{ cosec }A\right] }\\\\ &=\dfrac{\cot ^{2}A-2 \cot A+2 \cot A \text{ cosec }A+1+\text{ cosec }^{2}A-2\text{ cosec }A}{\cot ^{2}A-1-\text{ cosec}^{2}\ A+2 \text{ cosec }A}\\\\ &\color{cyan}\boxed{\text{cosec }^{2}A-1=\cot ^{2}A}\\\\ &=\dfrac{\text{cosec }^{2}A-1-2 \cot A+2 \cot A \text{ cosec }A+1+\text{ cosec }^{2}A-2 \text{ cosec }A}{\text{cosec}^{2}\ A-1-1-\text{ cosec }^{2}A+2 \text{ cosec }A}\\\\ &=\dfrac{2\text{ cosec } ^{2}A-2 \cot A+2 \cot A \text{ cosec } A-2\text{ cosec } A}{2 \text{ cosec }A-2}\end{aligned}$$ $$\scriptsize\begin{aligned}&=\dfrac{\text{cosec } ^{2}A+\cot A \text{ cosec } A-\text{ cosec } A-\cot A}{\text{ cosec } -1}\\\\ &=\dfrac{\text{cosec } A\left( \text{ cosec } A+\cot A\right) -1 \left( \text{ cosec } A+\cot A\right) }{\text{ cosec } -1}\\\\ &=\dfrac{\left( \text{cosec } A+\cot A\right) \left( \text{cosec } -1\right) }{\left( \text{cosec } -1\right) }\\\\ &=\text{cosec } A+\cot A\end{aligned}$$ Thus Proved.
vi. \[\dfrac{1+\sin A}{1-\sin A}=\sec A+\tan A\]
LHS
$$\begin{aligned} &\sqrt{\dfrac{1+\sin A}{1-\sin A} \times\dfrac{1+\sin A}{1+\sin A}}\\\\ &=\sqrt{\dfrac{\left( 1+\sin A\right) ^{2}}{1-\sin ^{2}A}}\\\\ &=\sqrt{\dfrac{\left( 1+\sin A\right) ^{2}}{\cos ^{2}A}}\\\\ &=\dfrac{1+\sin A}{\cos A}\\\\ &=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\\\\ &=\sec A+\tan A=RHS\\\\ LHS=RHS\end{aligned}$$
Thus Proved

vii. \[\dfrac{\sin \theta -2 \sin ^{3}\theta }{2 \cos ^{3}\theta -\cos \theta }=\tan \theta\]
LHS
$$\begin{aligned}&\dfrac{\sin \theta \left( 1-2 \sin ^{2}\theta \right) }{\cos \theta \left( 2 \cos ^{2}\theta -1\right) }\\\\ &\color{cyan}\boxed{1-2 \sin ^{2}\theta =\cos 2\theta} \\ &\color{cyan}\boxed{2 \cos ^{2}\theta -1=\cos 2\theta} \\\\ &=\dfrac{\sin \theta \left( \cos 2\theta \right) }{\cos \theta \left( \cos 2\theta \right) }\\\\ &=\dfrac{\sin \theta }{\cos \theta }\\\\ &=\tan \theta =RHS\\\\ LHS&=RHS\end{aligned}$$
Thus Proved

viii. \[\scriptsize\left( \sin A+\text{ cosec }A\right) ^{2}+\left( \cos A+\sec A\right) ^{2}=7+\tan ^{2}A+\cot ^{2}A\]
LHS
$$\scriptsize\begin{aligned} &\left( \sin A+\text{ cosec }A\right) ^{2}+\left( \cos A+\sec A\right) ^{2}\\\\ &=\left( \sin ^{2}A+\text{ cosec }^{2}A+2 \sin A \text{ cosec }A\right) \\ &\quad+\left( \cos ^{2}A+\sec^{2}A+2 \cos A \sec A\right) \\\\ &=\left( \sin ^{2}A+1+\cot ^{2}A+2 \times\dfrac{\sin A}{\sin A}\right) \\ &\quad+\left( \cos ^{2}A+1+\tan ^{2}A+2\times \dfrac{\cos A}{\sin A}\right) \\\\ &=\left( \sin ^{2}A+1+\cot ^{2}A+2\right) \\ &\quad+\left( \cos ^{2}A+1+\tan ^{2}A+2\right) \\\\ &=\sin ^{2}A+1+\cot ^{2}A+2\\ &\quad+\cos ^{2}A+1+\tan ^{2}A+2\\\\ &=\sin ^{2}A+\cos ^{2}A+6\\ &\quad+\tan ^{2}A+\cot ^{2}A\\\\ &=1+6+\tan ^{2}A+\cot ^{2}A\\\\ &=7+\tan ^{2}A+\cot ^{2}A=RHS\\\\ LHS=RHS\end{aligned}$$
Hence Proved

ix. \[\scriptsize\left( \text{cosec } A-\sin A\right) \left( \sec A-\cos A\right) =\dfrac{1}{\tan A+\cot A}\]
LHS
$$\begin{aligned} &\left( \text{cosec } A-\sin A\right) \left( \sec A-\cos A\right) \\\\ &=\left( \dfrac{1}{\sin A}-\sin A\right) \left( \dfrac{1}{\cos A}-\cos A\right) \\\\ &=\left( \dfrac{1-\sin ^{2}A}{\sin A}\right) \left( \dfrac{1-\cos ^{2}A}{\cos A}\right) \\\\ &=1-\sin ^{2}A=\cos ^{2}A\\\\ &=1-\cos ^{2}A=\sin ^{2}A\\\\ &=\dfrac{\cos ^{2}A}{\sin A} \dfrac{\sin ^{2}A}{\cos A}\\\\ &=\sin A \cos A\end{aligned}$$
RHS
$$\begin{aligned} &\dfrac{1}{\tan A+\cot A}\\\\ &=\dfrac{1}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin }}\\\\ &=\dfrac{1}{\dfrac{\sin ^{2}A+\cos ^{2}A}{\cos A \sin A}}\\\\ &\color{cyan}\sin ^{2}A+\cos ^{2}A=1\\\\ &=\dfrac{\cos A \sin A}{1}\\\\ &=\sin A \cos A=LHS\\\\ LHS&=RHS\end{aligned}$$
Hence Proved

x. \[\dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}=\left[ \dfrac{1-\tan A}{1-\cot A}\right] ^{2}=\tan ^{2}A\]
LHS
$$\begin{aligned} &\dfrac{1+\tan ^{2}A}{1+\cot ^{2}A}\\\\ &=\dfrac{\sec ^{2}A}{\text{ cosec } ^{2}A}\\\\ &=\dfrac{\sin ^{2}A}{\cos ^{2}A}\\\\ &=\tan ^{2}A\end{aligned}$$
Hence Proved

LHS
\[\left[ \dfrac{1-\tan A}{1-\cot A}\right] ^{2}\] $$\begin{aligned} &\qquad\dfrac{\left( 1-\tan \right) ^{2}}{\left( 1-\cot A\right) ^{2}}\\\\ & \dfrac{1+\tan ^{2}A-2 \tan A}{1+\cot ^{2}A-2 \cot A}\\\\ & \dfrac{\sec ^{2}A-2 \tan A}{\text{ cosec }^{2}A-2 \cot A}\end{aligned}$$

Simplify Numerator first

$$\begin{aligned}&\sec ^{2}A-2 \tan A\\\\ &=\dfrac{1}{\cos ^{2}A}-\dfrac{2 \sin A}{\cos A}\\\\ &=\dfrac{1-2 \sin A \cos A}{\cos ^{2}A}\end{aligned}$$

Then simplify the Denominator

$$\begin{aligned}&\text{cosec }^{2}A-2 \cot A\\\\ &=\dfrac{1}{\sin ^{2}A}-\dfrac{2 \cos A}{\sin A}\\\\ &=\dfrac{1-2 \sin A \cos A}{\sin ^{2}A}\end{aligned}$$

Now put together

$$\begin{aligned}&=\dfrac{\dfrac{1-2 \sin A \cos A}{\cos ^{2}A}}{\dfrac{1-2 \sin A \cos A}{\sin ^{2}A}}\\\\ &=\dfrac{\sin ^{2}A \left( 1-2 \sin A \cos A\right) }{\cos ^{2}A \left( 1-2 \sin A \cos A\right) }\\\\ &=\dfrac{\sin ^{2}A}{\cos ^{2}A}\\\\ &=\tan ^{2}A=RHS\end{aligned}$$ Thus Proved.

Frequently Asked Questions

Trigonometry is the branch of mathematics that studies the relationship between the sides and angles of a right-angled triangle usin g trigonometric ratios such as sin e, cos in e, and tan gent.

Trigonometric ratios are ratios of the lengths of the sides of a right triangle with respect to one of its acute angles. They include sin , cos , tan , cos ec, sec , and cot .

The six ratios are: sin \(\theta\), cos \(\theta\), tan \(\theta\), cos ec\(\ \theta\), sec \(\theta\), and cot \(\theta\).

sin \(\theta\) = Opposite side ÷ Hypotenuse.

cos \(\theta\) = Adjacent side ÷ Hypotenuse.

tan \(\theta\) = Opposite side ÷ Adjacent side.

tan \(\theta\) = sin \(\theta\) ÷ cos \(\theta\).

cosec\(\ \theta\) = 1 ÷ sin \(\theta\) = Hypotenuse ÷ Opposite side.

sec \(\theta\) = 1 ÷ cos \(\theta\) = Hypotenuse ÷ Adjacent side.

cot \(\theta\) = 1 ÷ tan \(\theta\) = Adjacent side ÷ Opposite side.

Values include: sin 0\(^\circ\)=0, sin 30\(^\circ\)=1/2, sin 45\(^\circ\)=v2/2, sin 60\(^\circ\)=v3/2, sin 90\(^\circ\)=1 (others similarly defined).

They help solve real-life problems involving heights, distan ces, angles of elevation/depression, navigation, physics, engineering, and architecture.

The angle formed between the horizontal line and the line of sight when the observer looks upward at an object.

The angle formed between the horizontal line and the line of sight when the observer looks downward from a higher point.

sin ²\(\ \theta\) + cos ²\(\ \theta\) = 1.

1 + tan ²\(\ \theta\) = sec ²\(\ \theta\) and 1 + cot ²\(\ \theta\) = cos ec²\(\ \theta\).

tan \(\theta\) × cot \(\theta\) = 1.

sin \(\theta\) × cosec\(\ \theta\) = 1.

cos \(\theta\) × sec \(\theta\) = 1.

45\(^\circ\), because sin 45\(^\circ\) = cos 45\(^\circ\) = v2/2.

Only acute angles (0\(^\circ\) < \(\theta\) < 90\(^\circ\)) are considered in this chapter.

No, negative angles and circular trigonometric functions are not introduced at this level.

Trigonometric ratios help determine unknown heights, widths, and distan ces by relating them to measured angles.

tan \(\theta\) = sin \(\theta\)/cos \(\theta\).

Use the mnemonic: SOH-CAH-TOA.or Pundit Badri Prasad Har Har Bole

Because it lies opposite the right angle, based on the Pythagorean theorem.

tan 90\(^\circ\) is undefined because cos 90\(^\circ\)=0.

sec 90\(^\circ\) = 1/cos 90\(^\circ\) = undefined.

Because tan 0\(^\circ\)=0, so cot 0\(^\circ\) = 1/0, which is undefined.

Two angles whose sum is 90\(^\circ\).

sin (90\(^\circ\)-\(\ \theta\))=cos \(\theta\), cos (90\(^\circ\)-\(\ \theta\))=sin \(\theta\), tan (90\(^\circ\)-\(\ \theta\))=cot \(\theta\), etc.

Ratios depend only on the angle, not on the actual size of the triangle.

No. For a given angle, the trigonometric ratios remain constan t.

\(\sin \theta\) = tan \(\theta\sqrt{(1+tan ²\ \theta}\).

\(\cos \theta = \dfrac{1}{\sqrt{(1+tan ² \theta}}\).

\(\tan \theta = \dfrac{\sin \theta}{\sqrt{(1-sin^2\ \theta}}\).

\(\tan \theta= \dfrac{\sqrt{(1-cos^2\ \theta)}}{\cos \theta}\).

Problems involving complementary angles and stan dard value tables are frequently tested.

Measuring mountain heights, building construction, aviation, satellite tracking, GPS, and navigation.

Class 10 NCERT curriculum covers only degree measure for introductory learning.

Yes, but such applications require advanced formulas (sin e rule, cos in e rule) taught in higher classes.

Theodolites, sextan ts, clinometers, laser rangefinders, and surveying instruments.

A surveying instrument used to measure horizontal and vertical angles for calculating heights and distan ces.

It is used in designing structures, mechanical components, electrical waves, circuits, and digital systems.

It creates equal opposite and adjacent sides, leading to simple trigonometric values.

Three core identities: sin ²\(\ \theta\) + cos ²\(\ \theta\) = 1; 1 + tan ²\(\ \theta\) = sec ²\(\ \theta\); 1 + cot ²\(\ \theta\) = cosec²\(\ \theta\).

They help students quickly recall stan dard values essential for solving exam problems.

Usin g calculators, ignoring diagrams, and misidentifying opposite/adjacent sides.

Visualizing the triangle reduces mistakes and clarifies angle–side relationships.

Understan d the geometric meaning rather than memorizing formulas blindly.

Identify the angle first; the side directly across it is opposite, and the side touching it (except hypotenuse) is adjacent.

Yes, because all angles considered (0\(^\circ\)–90\(^\circ\)) lie in the first quadrant.

It leads to understan ding functions, calculus, vectors, coordinate geometry, and physics waveforms.

sin 30\(^\circ\) = 1/2, derived from the geometry of a 30\(^\circ\)-60\(^\circ\) right triangle.

Yes, cartography uses trigonometric principles to estimate distan ces and directions.

To introduce students to trigonometric ratios, identities, and basic applications in a right triangle.

Stan dard values, complementary angles, identities, and basic height-distan ce problems.

An angle greater than 0\(^\circ\) and less than 90\(^\circ\).

Finding heights usin g the angle of elevation and a known distan ce.

It teaches ratio relationships, spatial interpretation, and analytical problem-solving.

Recent posts


    Important Links

    Leave Your Message & Comments