STATISTICS-Exercise 13.2
Maths - Exercise
Q1. The following table shows the ages of the patients admitted in a hospital during a year:
| Age (in years) | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 | 55-65 |
|---|---|---|---|---|---|---|
| Number of patients | 6 | 11 | 21 | 23 | 14 | 5 |
Solution
Lets us put the data in table| Class Interval | \(f_i\) | \(x_i\) | \(d_i\) | \(f_id_i\) |
|---|---|---|---|---|
| 5-15 | 6 | 10 | -20 | -120 |
| 15-25 | 11 | 20 | -10 | -110 |
| 25-35 | 21 \((f_0)\) | 30 | 0 | 0 |
| 35-45 | 23 \((f_1)\) | 40 | 10 | 230 |
| 45-55 | 14 \((f_2)\) | 50 | 20 | 280 |
| 55-65 | 5 | 60 | 30 | 150 |
| Total | \(\sum{f_i=80}\) | \(\sum{f_id_i=430}\) | ||
Modal Class 35-45 (class with highest frequency)
class interval (h) = Upper class limit-lower class limit = 15-5- 10
Assumed mean = 30
Substitute the values
Maximum Number of patients admitted in the hospital are of age 36.8, while on an average the age of patient admitted to the hospital is 35.37 years
Q2. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components :
| Lifetimes (in hours) | 0-20 | 20-40 | 40-60 | 60-80 \(\tiny\text{(Modal Class)}\) |
80-100 | 100-120 |
|---|---|---|---|---|---|---|
| Frequency | 10 | 35 | 52 \((f_0)\) | 61 \((f_1)\) | 38 \((f_2)\) | 29 |
Solution
Modal Class = 60-80 (class having Maxium frequency)
class interval (h) = Upper class limit-lower class limit = 20-0 = 20
Modal lifetime of components = 65.625 hours
Q3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure :
| Expenditure (in ₹) | 1000-1500 | 1500-2000 | 2000-2500 | 2500-3000 | 3000-3500 | 3500-4000 | 4000-4500 | 4500-5000 |
|---|---|---|---|---|---|---|---|---|
| Number of families | 24 | 40 | 33 | 28 | 30 | 22 | 16 | 7 |
Solution
Lets us put the data in table| Class Interval | \(f_i\) | \(x_i\) | \(d_i=x_i-a\) | \(u_i=\frac{d_i}{h}\) | \(f_iu_i\) |
|---|---|---|---|---|---|
| 1000-1500 | 24 \((f_0)\) | 1250 | -1500 | -3 | -72 |
| 1500-2000 | 40 \((f_1)\) | 1750 | -1000 | -2 | -80 |
| 2000-2500 | 33 | 2250 | -500 | -1 | -33 |
| 2500-3000 | 28 | 2750 | 0 | 0 | 0 |
| 3000-3500 | 30 | 3250 | 500 | 1 | 30 |
| 3500-4000 | 22 | 3750 | 1000 | 2 | 44 |
| 4000-4500 | 16 | 3750 | 1500 | 3 | 48 |
| 4500-5000 | 7 | 4250 | 2000 | 4 | 28 |
| Total | \(\sum{f_i}=(200)\) | \(\sum{f_iu_i}=(-35)\) | |||
Modal Class = 1500-2000 (Class having Maximum frequency)
Class interval (h) = Upper class limit- lower class limit
= 1500-1000 = 500
Assumed mean = 2750
Class interval (h) = 500
Substituting values in Mean formula
Modal Month y Expense = 1847.83
Mean Monthly Expense = 2662.50
Q4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
| Number of students per teacher | Number of states / U.T. |
|---|---|
| 15-20 | 3 |
| 20-25 | 8 |
| 25-30 | 9 |
| 30-35 | 10 |
| 35-40 | 3 |
| 40-45 | 0 |
| 45-50 | 0 |
| 50-55 | 2 |
Solution
Lets put data in table| Class Interval | \(f_i\) | \(x_i\) | \(d_i\) | \(f_id_i\) |
|---|---|---|---|---|
| 10-20 | 3 | 17.5 | -15 | -45 |
| 20-25 | 8 | 22.5 | -10 | -80 |
| 25-30 | 9 \((f_0)\) | 27.5 | -5 | -45 |
| 30-35 | 10 \((f_1)\) | 32.5 | 0 | 0 |
| 35-40 | 3 \((f_2)\) | 37.5 | 5 | 15 |
| 40-45 | 0 | 42.5 | 10 | 0 |
| 45-50 | 0 | 47.5 | 15 | 0 |
| 50-55 | 2 | 52.5 | 20 | 40 |
| Total | \(\sum{f_i}=35\) | \(\sum{f_id_i}=-115\) | ||
Modal Class - 30-35 (Class having maximum frequency)
class interval h = Upper Class limit-lower class limit
= 20-15 = 5
Assumed mean = 32.5
Substitute values in formula
Mode=30.6
Mean = 29.2
Q5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
| Runs score | Number of batsmen |
|---|---|
| 3000-4000 | 4 \((f_0)\) |
| 4000-5000 | 18 \((f_1)\) |
| 5000-6000 | 9 \((f_2)\) |
| 6000-7000 | 7 |
| 7000-8000 | 6 |
| 8000-9000 | 3 |
| 9000-10000 | 2 |
| 10000-11000 | 1 |
Solution
Modal class = 4000-5000 (having maximum frequency)
h = 5000-4000 = 1000
Mode = 4608.7
Q6. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data :
| Number of cars | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|---|---|---|---|---|---|---|---|---|
| Frequency | 7 | 14 | 13 | 12 \((f_0)\) | 20 \((f_1)\) | 11 \((f_2)\) | 15 | 8 |
Solution
Modal class = 40-50 (class having maximum frequency)
h = upper Class limit-lower Class limit
= 50-40 = 10