STATISTICS-Exercise 13.3
Maths - Exercise
Q1. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
| Monthly consumption (in units) | Number of consumers |
|---|---|
| 65-85 | 4 |
| 85-105 | 5 |
| 105-125 | 13 |
| 125-145 | 20 |
| 145-165 | 14 |
| 165-185 | 4 |
Solution
Lets us put the data in a frequency distribution table
| Class Interval | \(f_i\) | \(cf\) | \(x_i\) | \(d_i\) | \(f_id_i\) |
|---|---|---|---|---|---|
| 65-85 | 4 | 4 | 75 | -60 | -240 |
| 85-105 | 5 | 9 | 95 | -40 | -200 |
| 105-125 | 13 \((f_0)\) | 22 | 115 | -20 | -260 |
| 125-145 | 20 \((f_1)\) | 42 | 135 | 0 | 0 |
| 145-165 | 14 \((f_2)\) | 56 | 155 | 20 | 280 |
| 165-185 | 8 | 64 | 175 | 40 | 320 |
| 185-205 | 4 | 68 | 195 | 60 | 240 |
| Total | \(\sum{f_i}=68\) | \(cf=68\) | \(\sum{f_id_i}=140\) | ||
Calculation of Mode
Modal Class = 125-145 (class having maximum frequency)
\(h\) = upper class limit-lower class limit = 85-65 = 20
Substituting Values in Mode Formula $$\begin{aligned}\text{MODE}&=l+\left( \dfrac{f_{1}-f_{0}}{2f_{1}-f_{0}-}f_{2}\right) h\\\\ &=125+\left( \dfrac{20-13}{2\times 2-13-14}\right) h\\\\ &=125+\left( \dfrac{7}{40-27}\right) \times 20\\\\ &=125+\left( \dfrac{7\times 20}{13}\right) \\\\ &=125+\dfrac{140}{13}\\\\ &=135.76\end{aligned}$$
Calculation of Mean
Assumed mean \(a\) = 135
Substituting value in Mean Formula
Calculation of Median
\(\frac{n}{2}\times 68 = 34\)
Median class = 125-145 (34 lies in this class)
\(cf = 22\) (Cumulative frequency of preceding class)
\(f\) = frequency of median class
\(h\) - class size
Median = 137, Mode = 135.76, Mean = 137.05
Q2. If the median of the distribution given below is 28.5, find the values of x and y.
| Class interval | Frequency |
|---|---|
| 0-10 | 5 |
| 10-20 | \(x\) |
| 20-30 | 20 |
| 30-40 | 15 |
| 40-50 | \(y\) |
| 50-60 | 5 |
| Total | 60 |
Solution
Let us put data in a frequency table| Class interval | Frequency \(f\) | \(cf\) |
|---|---|---|
| 0-10 | 5 | \(5\) |
| 10-20 | \(x\) | \(5+x\) |
| 20-30 | 20 | \(25+x\) |
| 30-40 | 15 | \(40+x\) |
| 40-50 | \(y\) | \(40+x+y\) |
| 50-60 | 5 | \(45+x+y\) |
| Total | 60 | \(45+x+y\) |
$$\begin{align}n&=60\\ \dfrac{n}{2}&=\dfrac{60}{2}\\ &=30\\ 45+x+y&=60\\ x+y&=60-45\\ x+y&=15\tag{1}\end{align}$$
Median 28.5 lies in interval 20-30, therefore median class is 20-30
class size \((h)\) = 10
$$\begin{aligned}\text{Median}&=l+\left( \dfrac{n/2-cf}{f}\right) \times h\\\\ 28.5&=20+\left[ \dfrac{30-\left( 5+x\right) }{20}\right] \times 10\\\\ 28.5&=20+\left[ \dfrac{25-x}{2}\right] \\\\ 28.5-20&=\dfrac{25-x}{2}\\\\ 8.5\times 2&=25-x\\\\ 17&=25-x\\\\ x&=25-17\\\\ x&=8\end{aligned}$$
Substituting \(x=8\) in equation-(1)
$$\begin{aligned}x+y&=15\\\\ y&=15-x\\\\ &=15-8\\\\ &=7\\\\ \end{aligned}$$\(x=8,\ y=7\)
Q3. A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.
| Age (in years) | Number of policy holders |
|---|---|
| Below 20 | 2 |
| Below 25 | 6 |
| Below 30 | 24 |
| Below 35 | 45 |
| Below 40 | 78 |
| Below 45 | 89 |
| Below 50 | 92 |
| Below 55 | 98 |
| Below 60 | 100 |
Solution
Lets us put the data in frequency table| Class Interval | \(f\) | \(cf\) |
|---|---|---|
| Below 20 | 2 | 2 |
| 20-25 | 4 | 6 |
| 25-30 | 18 | 24 |
| 30-35 | 21 | 45 |
| 35-40 | 33 | 78 |
| 40-45 | 11 | 89 |
| 45-50 | 3 | 92 |
| 50-55 | 6 | 98 |
| 55-60 | 2 | 100 |
50 lies in class interval of 35-40
therefore median class = 35-40
Class size \((h)\) = 5
Median age of policy holders is 35.76 years
Q4. The lengths of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table :
| Length (in mm) | Number of leaves |
|---|---|
| 116-126 | 3 |
| 127-135 | 5 |
| 136-144 | 9 |
| 145-153 | 12 |
| 154-162 | 5 |
| 163-171 | 4 |
| 172-180 | 2 |
Solution
Class Interval is not continuos, therefore to make it continuous we will subtract 0.5 from lower limit and add 0.5 to upper limit Lets put data in frequency table| Class Interval | \(f\) | \(cf\) |
|---|---|---|
| 115.5-126.5 | 3 | 3 |
| 126.5-135.5 | 5 | 8 |
| 135.5-144.5 | 9 | 17 |
| 144.5-153.5 | 12 | 29 |
| 153.5-162.5 | 5 | 34 |
| 162.5-171.5 | 4 | 38 |
| 171.5-180.5 | 2 | 40 |
20 lies in the interval 144.5- 153.5
therefore median class = 144.5-153.5
Class size \((h)\) = 9
Q5. The following table gives the distribution of the life time of 400 neon lamps :
| Runs score | Number of batsmen |
|---|---|
| 1500-2000 | 14 |
| 2000-2500 | 56 |
| 2500-3000 | 60 |
| 3000-3500 | 86 |
| 3500-4000 | 74 |
| 4000-4500 | 62 |
| 4500-5000 | 48 |
Solution
| Class Interval | \(f\) | \(cf\) |
|---|---|---|
| 1500-2000 | 14 | 14 |
| 2000-2500 | 56 | 70 |
| 2500-3000 | 60 | 130 |
| 3000-3500 | 86 | 216 |
| 3500-4000 | 74 | 290 |
| 4000-4500 | 62 | 352 |
| 4500-5000 | 48 | 400 |
200 lies in 3000-3500 class interval
therefore Median class is 3000-3500
Class size \((h)\) = 3500-3000 = 500
Median life time of lamp is 3406.98 hours
Q6. 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:
| Number of letters | 1-4 | 4-7 | 7-10 | 10-13 | 13-16 | 16-19 |
|---|---|---|---|---|---|---|
| Number of surnames | 6 | 30 | 40 | 16 | 4 | 4 |
Solution
Lets put this data in frequency table| Class Interval | \(f_i\) | \(cf\) | \(x_i\) | \(d_i=a-x_i\) | \(f_id_i\) |
|---|---|---|---|---|---|
| 1-4 | 6 | 6 | 2.5 | -6 | -36 |
| 4-7 | 30 | 36 | 5.5 | -3 | -90 |
| 7-10 | 40 | 76 | 8.5 | 0 | 0 |
| 10-13 | 16 | 92 | 11.5 | 3 | 48 |
| 13-16 | 4 | 96 | 14.5 | 6 | 24 |
| 16-19 | 4 | 100 | 15.5 | 9 | 36 |
| Total | \(\sum{f_i}=100\) | \(\sum{f_id_i}=-18\) | |||
Calculation of Median
$$\begin{aligned}\dfrac{n}{2}&=\dfrac{100}{2}\\ &=50\end{aligned}$$
50 lies in the interval of 7-10, hence median class is 7-10
class size \((h)\) = 3
Calculation of Mean
Assumed mean \(a\) = 8.5
$$\begin{aligned}\overline{x}&=a+\left( \dfrac{\sum f_{i}d_{i}}{\sum fi}\right) \\ &=8.5+\left( \dfrac{-18}{10}\right) \\ &=8.5-0.18\\ &=8.32\end{aligned}$$Calculation of Mode
Class interval 7 - 10 is modal class as
highest frequency lies in this class
class size \((h)\) = 3
Q7. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
| Weight (in kg) | 40-45 | 45-50 | 50-55 | 55-60 | 60-65 | 65-70 | 70-75 |
|---|---|---|---|---|---|---|---|
| Number of students | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
Solution
Lets put these data in frequency table| Class Interval | \(f\) | \(cf\) |
|---|---|---|
| 40-45 | 2 | 2 |
| 45-50 | 3 | 5 |
| 50-55 | 8 | 13 |
| 55-60 | 6 | 19 |
| 60-65 | 6 | 25 |
| 65-70 | 3 | 28 |
| 70-75 | 2 | 30 |
15 lies in iterral 55-60, it is the median class
class size \((h)\) = 5